
AIR
User Manual

by Scott Iverson

© 2001-2014 SiTex Graphics, Inc.

SiTex Graphics



Table of Contents

Foreword 0

Part I Getting Started 12

................................................................................................................................... 131 Installation 

................................................................................................................................... 142 Gamma Correction 

................................................................................................................................... 153 Rendering 

................................................................................................................................... 164 Linux Notes 

................................................................................................................................... 165 Command Line Switches 

Part II What's New 20

Part III Color 23

................................................................................................................................... 251 Spectral Color Definition 

................................................................................................................................... 262 Spectral Prefiltering and Chromatic Adaptation 

................................................................................................................................... 283 Tone Mapping 

Part IV Image Quality 28

................................................................................................................................... 291 Geometry Sampling 

................................................................................................................................... 292 Shader Sampling 

................................................................................................................................... 313 Anti-Aliasing 

................................................................................................................................... 324 Pixel Filters 

................................................................................................................................... 325 Clamp to Alpha 

................................................................................................................................... 326 Field Rendering 

................................................................................................................................... 337 Hidden Surface Methods 

Part V Output 34

................................................................................................................................... 361 Multipass Rendering 

................................................................................................................................... 382 Rendering in Layers 

................................................................................................................................... 383 Light Channels 

................................................................................................................................... 404 Stereo and Multicamera Rendering 

................................................................................................................................... 415 Motion Vector Output 

................................................................................................................................... 416 Deep Images 

................................................................................................................................... 427 Display Drivers 

.......................................................................................................................................................... 42bmp (Windows Bitmap) 

.......................................................................................................................................................... 43deeptxt (Deep Image Text File) 

.......................................................................................................................................................... 43exr (OpenEXR) 

.......................................................................................................................................................... 43framebuffer 

.......................................................................................................................................................... 44hdr (Radiance Image Format) 

.......................................................................................................................................................... 44jpeg (JPEG Interchange File Format) 

.......................................................................................................................................................... 44pic (Softimage PIC) 

AIR User ManualI

© 2001-2014 SiTex Graphics, Inc.



.......................................................................................................................................................... 45png (Portable Network Graphics) 

.......................................................................................................................................................... 45psd (Photoshop) 

.......................................................................................................................................................... 46ptx (PTEX) 

.......................................................................................................................................................... 47rpf (Rich Pixel Format) 

.......................................................................................................................................................... 48tga (Targa) 

.......................................................................................................................................................... 49tiff (Tag Image File Format) 

.......................................................................................................................................................... 49sgi (SGI Image Format) 

.......................................................................................................................................................... 50shadow (AIR Shadow Map File) 

.......................................................................................................................................................... 50texture (AIR Texture Map) 

................................................................................................................................... 518 Custom Display Drivers 

Part VI Options 52

................................................................................................................................... 551 Runtime Control 

................................................................................................................................... 562 Search Paths 

................................................................................................................................... 573 Simple RIB Filtering 

................................................................................................................................... 584 Shading 

................................................................................................................................... 595 Network Cache 

................................................................................................................................... 596 File Management 

................................................................................................................................... 607 User-Defined Options 

Part VII Attributes 60

................................................................................................................................... 621 Visibility 

................................................................................................................................... 632 Sidedness 

................................................................................................................................... 633 Grouping 

................................................................................................................................... 644 User-Defined Attributes 

Part VIII Primitives 64

................................................................................................................................... 651 Approximation of Curved Surfaces 

................................................................................................................................... 662 Polygons 

................................................................................................................................... 673 Subdivision Surfaces 

................................................................................................................................... 684 Points 

................................................................................................................................... 695 Curves 

................................................................................................................................... 716 Blobbies and Dynamic Blob Ops 

................................................................................................................................... 747 Procedurals 

................................................................................................................................... 768 Implicit Surfaces 

................................................................................................................................... 769 Trim Curves 

................................................................................................................................... 7610 Instancing with Inline Archives 

Part IX Materials 77

Part X Shader Guide 78

................................................................................................................................... 791 Common Shader Features 

.......................................................................................................................................................... 79Illumination Models 

.......................................................................................................................................................... 813D Patterns 

IIContents

II

© 2001-2014 SiTex Graphics, Inc.



.......................................................................................................................................................... 812D Patterns 

.......................................................................................................................................................... 813D to 2D Projections 

.......................................................................................................................................................... 82Coordinate Spaces 

................................................................................................................................... 832 Displacement 

.......................................................................................................................................................... 86Displacement Shaders 

.......................................................................................................................................................... 88bumpy 

.......................................................................................................................................................... 88DarkTreeDisplacement 

.......................................................................................................................................................... 90OceanWaves 

.......................................................................................................................................................... 91VBrickGrooves 

.......................................................................................................................................................... 92VBumpRegions 

.......................................................................................................................................................... 93VCracks 

.......................................................................................................................................................... 93VDents 

.......................................................................................................................................................... 94VDimples 

.......................................................................................................................................................... 95VHammered 

.......................................................................................................................................................... 95VNicks 

.......................................................................................................................................................... 96VNormalMap 

.......................................................................................................................................................... 96VPillows 

.......................................................................................................................................................... 96VRibbed 

.......................................................................................................................................................... 97VRipples 

.......................................................................................................................................................... 98VStuccoed 

.......................................................................................................................................................... 98VTangentNormalMap 

.......................................................................................................................................................... 99VTexturedBump 

.......................................................................................................................................................... 99VThreads 

.......................................................................................................................................................... 100VWeaveDisplacement 

................................................................................................................................... 1013 Environments 

.......................................................................................................................................................... 102envColor 

.......................................................................................................................................................... 102envMap 

.......................................................................................................................................................... 103envPhysicalSky 

................................................................................................................................... 1054 Generics 

.......................................................................................................................................................... 105genColor 

.......................................................................................................................................................... 106genOcclusion 

.......................................................................................................................................................... 106genQueryBakedMap 

.......................................................................................................................................................... 107genTextureUV 

.......................................................................................................................................................... 107genUserAttributes 

.......................................................................................................................................................... 108genUV 

................................................................................................................................... 1095 Imagers 

.......................................................................................................................................................... 110background 

.......................................................................................................................................................... 111LensFlareImager 

.......................................................................................................................................................... 112Paper 

.......................................................................................................................................................... 112sRGB 

.......................................................................................................................................................... 113ToneMap 

.......................................................................................................................................................... 114VBackDrop 

.......................................................................................................................................................... 114VBgEnvironment 

.......................................................................................................................................................... 115VBgGradient 

.......................................................................................................................................................... 115VGreyscale 

.......................................................................................................................................................... 115WatercolorPaper 

................................................................................................................................... 1176 Instancers 

.......................................................................................................................................................... 117instCarpet 

.......................................................................................................................................................... 120instMultipleArchives 

.......................................................................................................................................................... 121MassiveAgents 

.......................................................................................................................................................... 121VArrayOnCurve 

.......................................................................................................................................................... 122VArrayOnSurface 

AIR User ManualIII

© 2001-2014 SiTex Graphics, Inc.



.......................................................................................................................................................... 122VExtrude 

.......................................................................................................................................................... 123VGrowFur 

.......................................................................................................................................................... 123VInstanceArchive 

.......................................................................................................................................................... 124VInstanceTree 

.......................................................................................................................................................... 125VShowBound 

................................................................................................................................... 1257 Lights 

.......................................................................................................................................................... 126ambientlight 

.......................................................................................................................................................... 127arealight, arealight_baked 

.......................................................................................................................................................... 129arealight2, arealight2_baked 

.......................................................................................................................................................... 130cardlight 

.......................................................................................................................................................... 131caustic, caustic_baked 

.......................................................................................................................................................... 132distantlight, distantlight_baked 

.......................................................................................................................................................... 133distant_projector 

.......................................................................................................................................................... 135distant_window_light 

.......................................................................................................................................................... 137envlight, envlight_baked 

.......................................................................................................................................................... 138indirect, indirect_baked 

.......................................................................................................................................................... 139indirectchannels 

.......................................................................................................................................................... 140massive_envlight 

.......................................................................................................................................................... 141massive_indirect 

.......................................................................................................................................................... 142photometric_pointlight 

.......................................................................................................................................................... 143pointlight, pointlight_baked 

.......................................................................................................................................................... 145portallight 

.......................................................................................................................................................... 147sky_portallight 

.......................................................................................................................................................... 149spherelight 

.......................................................................................................................................................... 152spotlight, spotlight_baked 

.......................................................................................................................................................... 155spot_projector 

.......................................................................................................................................................... 157spot_window_light 

.......................................................................................................................................................... 159sun_window_light 

.......................................................................................................................................................... 161sunlight 

.......................................................................................................................................................... 163texturedarealight 

.......................................................................................................................................................... 164uberlight 

................................................................................................................................... 1678 Procedures 

.......................................................................................................................................................... 168V3DArray 

.......................................................................................................................................................... 168VTree 

................................................................................................................................... 1739 Strokes 

.......................................................................................................................................................... 174strokePencil 

.......................................................................................................................................................... 176strokeWatercolorEdge 

................................................................................................................................... 17610 Surfaces 

.......................................................................................................................................................... 185Bake3d 

.......................................................................................................................................................... 186BakedSurface 

.......................................................................................................................................................... 188BakeTangentNormalMap 

.......................................................................................................................................................... 188CausticPass 

.......................................................................................................................................................... 188ClownPass 

.......................................................................................................................................................... 189constant 

.......................................................................................................................................................... 189DarkTreeSurface 

.......................................................................................................................................................... 191defaultsurface 

.......................................................................................................................................................... 191depthpass 

.......................................................................................................................................................... 192Emitter 

.......................................................................................................................................................... 192FakeCarpet 

.......................................................................................................................................................... 196Glow 

.......................................................................................................................................................... 197IndirectPass 

.......................................................................................................................................................... 197massive_occlusionpass 

.......................................................................................................................................................... 198matte 

IVContents

IV

© 2001-2014 SiTex Graphics, Inc.



.......................................................................................................................................................... 198metal 

.......................................................................................................................................................... 199MotionPass 

.......................................................................................................................................................... 199occlusionpass 

.......................................................................................................................................................... 200OceanSurface 

.......................................................................................................................................................... 201OceanSurfaceWithFoam 

.......................................................................................................................................................... 203paintedplastic 

.......................................................................................................................................................... 204particle 

.......................................................................................................................................................... 205plastic 

.......................................................................................................................................................... 206ReelSmartMotion 

.......................................................................................................................................................... 206shadowpass 

.......................................................................................................................................................... 207shinymetal 

.......................................................................................................................................................... 207ShowNormal 

.......................................................................................................................................................... 208ShowPosition 

.......................................................................................................................................................... 208SimpleMetal 

.......................................................................................................................................................... 209SimplePlastic 

.......................................................................................................................................................... 210UseBackground 

.......................................................................................................................................................... 210V2SidedPlastic 

.......................................................................................................................................................... 212VAnimatedMap 

.......................................................................................................................................................... 213VBlinn 

.......................................................................................................................................................... 215VBrick2D 

.......................................................................................................................................................... 216VBrushedMetal 

.......................................................................................................................................................... 217VBrushedPlastic 

.......................................................................................................................................................... 218VCarPaint 

.......................................................................................................................................................... 219VCeramic 

.......................................................................................................................................................... 221VClay 

.......................................................................................................................................................... 222VCloth 

.......................................................................................................................................................... 224VClothAdvanced 

.......................................................................................................................................................... 226VCumulusCloud 

.......................................................................................................................................................... 228VConcrete 

.......................................................................................................................................................... 228VDashes 

.......................................................................................................................................................... 229VDecal2D 

.......................................................................................................................................................... 230VDecal3D 

.......................................................................................................................................................... 232Velvet 

.......................................................................................................................................................... 233VFabric 

.......................................................................................................................................................... 234VFur 

.......................................................................................................................................................... 235VGlass 

.......................................................................................................................................................... 236VGradient 

.......................................................................................................................................................... 237VGranite 

.......................................................................................................................................................... 238VGrid2D 

.......................................................................................................................................................... 239VHair 

.......................................................................................................................................................... 239VHexTile 

.......................................................................................................................................................... 241VLayeredMaterials 

.......................................................................................................................................................... 242VLeather 

.......................................................................................................................................................... 243VLines 

.......................................................................................................................................................... 244VMarble 

.......................................................................................................................................................... 246VMetal 

.......................................................................................................................................................... 247VPhong 

.......................................................................................................................................................... 248VPhysicalMetal 

.......................................................................................................................................................... 249VPhysicalPlastic 

.......................................................................................................................................................... 250VPlanks 

.......................................................................................................................................................... 252VPlastic 

.......................................................................................................................................................... 253VRubber 

.......................................................................................................................................................... 254VRustyMetal 

.......................................................................................................................................................... 255VScreen 

AIR User ManualV

© 2001-2014 SiTex Graphics, Inc.



.......................................................................................................................................................... 256VShadeCarpet 

.......................................................................................................................................................... 256VShadowedConstant 

.......................................................................................................................................................... 257VShadowedTransparent 

.......................................................................................................................................................... 257VShinyTile2D 

.......................................................................................................................................................... 259VSketchOutline 

.......................................................................................................................................................... 259VSkin 

.......................................................................................................................................................... 262VSmokeSurface 

.......................................................................................................................................................... 263VTexturedConstant 

.......................................................................................................................................................... 263VThinGlass 

.......................................................................................................................................................... 264VTone 

.......................................................................................................................................................... 265VToon 

.......................................................................................................................................................... 266VTranslucent 

.......................................................................................................................................................... 268VTranslucentMarble 

.......................................................................................................................................................... 269VWatercolor 

.......................................................................................................................................................... 271VWeave 

.......................................................................................................................................................... 272VWood 

................................................................................................................................... 27311 Volumes 

.......................................................................................................................................................... 274fog 

.......................................................................................................................................................... 274VFog 

.......................................................................................................................................................... 274VSmoke 

................................................................................................................................... 27512 DarkTree Shaders 

................................................................................................................................... 27613 Layered Shaders and Shader Networks 

................................................................................................................................... 28014 The Shading Language 

................................................................................................................................... 28115 Shading Language Extensions 

.......................................................................................................................................................... 283User Structures 

.......................................................................................................................................................... 284areashadow() 

.......................................................................................................................................................... 285bake3d() 

.......................................................................................................................................................... 285blinn() 

.......................................................................................................................................................... 286brushedspecular() 

.......................................................................................................................................................... 286caustic() 

.......................................................................................................................................................... 286collect() 

.......................................................................................................................................................... 287cooktorrance() 

.......................................................................................................................................................... 287dictionary() 

.......................................................................................................................................................... 287diffuse() 

.......................................................................................................................................................... 289environment() 

.......................................................................................................................................................... 291foglight() 

.......................................................................................................................................................... 291fulltrace() 

.......................................................................................................................................................... 291gather() 

.......................................................................................................................................................... 293indirectdiffuse() 

.......................................................................................................................................................... 294irradiancecache() 

.......................................................................................................................................................... 295isbaking() 

.......................................................................................................................................................... 295isindirectray() 

.......................................................................................................................................................... 295isphoton() 

.......................................................................................................................................................... 295isshadowray() 

.......................................................................................................................................................... 295meshinfo() 

.......................................................................................................................................................... 297microcylinder() 

.......................................................................................................................................................... 298occlusion() 

.......................................................................................................................................................... 300rayhittest() 

.......................................................................................................................................................... 300rayinfo() 

.......................................................................................................................................................... 300raylevel() 

.......................................................................................................................................................... 301ribprintf() 

.......................................................................................................................................................... 301shadow() 

VIContents

VI

© 2001-2014 SiTex Graphics, Inc.



.......................................................................................................................................................... 301specular() 

.......................................................................................................................................................... 301str_replace_last_number 

.......................................................................................................................................................... 302subsurfacescatter() 

.......................................................................................................................................................... 303texture() 

.......................................................................................................................................................... 303texture3d() 

.......................................................................................................................................................... 304trace() 

.......................................................................................................................................................... 305visibility() 

.......................................................................................................................................................... 305voronoi() 

Part XI 2D Texture Mapping 305

................................................................................................................................... 3071 Projecting Textures ("Decaling") 

................................................................................................................................... 3082 Vector Textures 

................................................................................................................................... 3093 PTEX:  Per-Face Texture Mapping 

Part XII 3D Textures & Point Sets 310

Part XIII Lighting 312

................................................................................................................................... 3131 Area Lights 

................................................................................................................................... 3142 Shadows 

.......................................................................................................................................................... 315Ray Traced Shadows 

.......................................................................................................................................................... 317Shadow Maps 

.......................................................................................................................................................... 318Fragment Shadow Maps 

.......................................................................................................................................................... 319Automaps 

................................................................................................................................... 3203 Indirect Lighting 

................................................................................................................................... 3254 Ambient Occlusion 

.......................................................................................................................................................... 326Ray-Traced Occlusion 

.......................................................................................................................................................... 328Depth-Mapped Occlusion 

.......................................................................................................................................................... 329Point-based Occlusion 

................................................................................................................................... 3315 Image-Based Lighting 

................................................................................................................................... 3326 Photometric Lights and IES Profiles 

................................................................................................................................... 3337 Caustics 

................................................................................................................................... 3358 Subsurface Scattering (SSS) 

................................................................................................................................... 3379 Baking Shadows and Illumination 

Part XIV Ray Tracing 338

................................................................................................................................... 3391 Importance-Based Rendering 

................................................................................................................................... 3402 Optimizing Memory for Ray Traced Objects 

Part XV Reflections 340

................................................................................................................................... 3401 Ray Traced Reflections 

................................................................................................................................... 3422 Reflections using Environment Maps 

................................................................................................................................... 3433 Anisotropic Reflections 

................................................................................................................................... 3434 BRDF Reflection Sampling 

Part XVI Motion Blur, DOF, & LOD 344

AIR User ManualVII

© 2001-2014 SiTex Graphics, Inc.



................................................................................................................................... 3441 Motion Blur 

................................................................................................................................... 3452 Depth of Field 

................................................................................................................................... 3463 Level of Detail 

Part XVII Outlines for Toon Rendering and Illustration 346

................................................................................................................................... 3491 Illustration Shaders and Examples 

Part XVIII Volume Rendering 350

................................................................................................................................... 3521 Writing Shaders for Volume Primitives 

................................................................................................................................... 3532 RIB Volume Primitive 

Part XIX Pipeline, Workflow, and Optimization 354

................................................................................................................................... 3551 Conditional RIB 

................................................................................................................................... 3552 RIB Filters 

................................................................................................................................... 3573 Geometry Export 

................................................................................................................................... 3574 General Optimization Tips 

Part XX TweakAir for Interactive Rendering 358

................................................................................................................................... 3591 TweakAIR Options 

................................................................................................................................... 3592 TweakAIR Attributes 

................................................................................................................................... 3603 TweakAIR API 

.......................................................................................................................................................... 361IrBegin 

.......................................................................................................................................................... 362IrColor 

.......................................................................................................................................................... 362IrDeleteLight 

.......................................................................................................................................................... 362IrEnd 

.......................................................................................................................................................... 362IrIlluminate 

.......................................................................................................................................................... 362IrLightTransform 

.......................................................................................................................................................... 362IrNewDisplacement 

.......................................................................................................................................................... 363IrNewEnvironment 

.......................................................................................................................................................... 363IrNewImager 

.......................................................................................................................................................... 363IrNewLight 

.......................................................................................................................................................... 363IrNewSurface 

.......................................................................................................................................................... 363IrOpacity 

.......................................................................................................................................................... 364IrRefreshWindow 

.......................................................................................................................................................... 364IrSelect 

.......................................................................................................................................................... 365IrTweakAttribute 

.......................................................................................................................................................... 365IrTweakCamera 

.......................................................................................................................................................... 365IrTweakCoordinateSystem 

.......................................................................................................................................................... 365IrTweakDisplacement 

.......................................................................................................................................................... 366IrTweakEnvironment 

.......................................................................................................................................................... 366IrTweakImager 

.......................................................................................................................................................... 366IrTweakLight 

.......................................................................................................................................................... 366IrTweakOption 

.......................................................................................................................................................... 367IrTweakSurface 

.......................................................................................................................................................... 367IrWriteImage 

Part XXI BakeAir for Baking Textures and Meshes 367

VIIIContents

VIII

© 2001-2014 SiTex Graphics, Inc.



................................................................................................................................... 3681 Applications for Baked Textures 

................................................................................................................................... 3682 Baking Textures with BakeAir 

................................................................................................................................... 3713 Baking PTEX Textures with BakeAir 

................................................................................................................................... 3714 Writing Bake-Aware Shaders 

................................................................................................................................... 3725 Baking Meshes with BakeAir 

Part XXII Massive 373

................................................................................................................................... 3741 Rendering with AIR from Massive 

................................................................................................................................... 3752 Command Line Rendering of Massive Scenes 

................................................................................................................................... 3773 Display Customization and Multipass Rendering 

................................................................................................................................... 3794 massrib 

................................................................................................................................... 3815 Shading and Lighting in Air Space 

................................................................................................................................... 3826 Ambient Occlusion in Massive 

................................................................................................................................... 3857 Mattes, Layers, and Groups 

................................................................................................................................... 3868 Eliminating Shadow Artifacts on Terrain 

................................................................................................................................... 3869 Rendering Massive Agents with Maya & MayaMan 

................................................................................................................................... 38710 Automatic Level of Detail 

................................................................................................................................... 38811 Massive Agent Light Tool (malt) 

................................................................................................................................... 38912 Rendering Massive Agents in Rhino 

................................................................................................................................... 39013 Optimization Tips for Massive Scenes 

................................................................................................................................... 39114 Rendering a Depth Pass 

................................................................................................................................... 39115 Adding a background image 

Part XXIII Houdini 392

................................................................................................................................... 3921 Configuring Houdini for Air 

................................................................................................................................... 3932 Rendering with Air from Houdini 

................................................................................................................................... 3953 Houdini Lights and Air 

................................................................................................................................... 3964 Ambient Occlusion with Air and Houdini 

................................................................................................................................... 3975 Global Illumination with Air and Houdini 

................................................................................................................................... 3986 Creating Shaders for Air in Houdini 

................................................................................................................................... 3987 Adding New Shaders to Houdini 

Part XXIV Tools 398

................................................................................................................................... 3991 AIR Control 

................................................................................................................................... 4002 AIR Point Tool (airpt) 

................................................................................................................................... 4013 AIR Show 

.......................................................................................................................................................... 402Image Display 

.......................................................................................................................................................... 403View Navigation 

.......................................................................................................................................................... 404Depth Map Display 

.......................................................................................................................................................... 405Rendering to a Remote Machine 

.......................................................................................................................................................... 405Framebuffer Parameters 

.......................................................................................................................................................... 405Command Line Options 

AIR User ManualIX

© 2001-2014 SiTex Graphics, Inc.



.......................................................................................................................................................... 406Menus 

......................................................................................................................................................... 406File

......................................................................................................................................................... 407Edit

......................................................................................................................................................... 407View

......................................................................................................................................................... 408Animate

......................................................................................................................................................... 408Sound (Windows only)

......................................................................................................................................................... 408Options

.......................................................................................................................................................... 409Keyboard Shortcuts 

................................................................................................................................... 4094 MakeLIF 

................................................................................................................................... 4105 Shading Compiler (shaded) 

................................................................................................................................... 4116 Shader Info (slbtell) 

................................................................................................................................... 4127 Texture Converter (mktex) 

.......................................................................................................................................................... 412Texture Maps 

.......................................................................................................................................................... 414Shadow Maps 

.......................................................................................................................................................... 414Latitude-Longitude Environment Maps 

.......................................................................................................................................................... 414Cube-Face Environment Maps 

.......................................................................................................................................................... 415Mirror Balls and Angular Maps 

.......................................................................................................................................................... 415Compositing 

.......................................................................................................................................................... 417Stitching Images 

................................................................................................................................... 4178 Texture Converter User Interface (mktexui) 

................................................................................................................................... 4189 Vortex 

Part XXV Plugins and Companions 420

Part XXVI Resources 422

Part XXVII License Agreement 423

Part XXVIII Copyrights, Trademarks, and Credits 424

Part XXIX History 425

................................................................................................................................... 4261 AIR 13.0 

................................................................................................................................... 4292 AIR 12.0 

................................................................................................................................... 4323 AIR 11.0 

................................................................................................................................... 4364 AIR 10.0 

................................................................................................................................... 4395 AIR 9.0 

................................................................................................................................... 4426 AIR 8.0 

................................................................................................................................... 4447 AIR 7.0 

................................................................................................................................... 4478 AIR 6.0 

................................................................................................................................... 4489 AIR 5.0 

................................................................................................................................... 45010 AIR 4.1 

................................................................................................................................... 45211 AIR 4.0 

................................................................................................................................... 45312 AIR 3.1 

................................................................................................................................... 45513 AIR 3.0 

................................................................................................................................... 45714 AIR 2.9 

XContents

X

© 2001-2014 SiTex Graphics, Inc.



................................................................................................................................... 45815 AIR 2.8 

Index 0

AIR User ManualXI

© 2001-2014 SiTex Graphics, Inc.



Getting Started 12

© 2001-2014 SiTex Graphics, Inc.

1 Getting Started

Welcome to Air, SiTex Graphics' advanced 3D rendering software for visual effects, design, and
visualization.

Air accepts files in RIB (RenderMan® Interface Bytestream) format.  Many popular modeling and
animation programs can generate RIB output either natively or with the aid of a plugin.

The following plugins are available from the SiTex Graphics web site (www.sitexgraphics.com):

Air Stream plugin for Maya
RhinoAir for Rhino 4 or Rhino 5
SketchAir for SketchUp

The following applications support Air natively or via a 3rd party plugin:

Massive
Houdini (from Side Effects Software)
CineMan for Cinema 4D

Other compatible products include:

CityEngine from Procedural, Inc.
The RealFlow Rendering Toolkit for the RealFlow fluid and dynamics software

On Windows systems Air ships with Air Space, a standalone user interface for Air.  More information
on Air Space can be found in the separate Air Space User Manual.

Air can also be used to render a scene file from a command prompt or using the Air Control tool
included with Air.

Air Feature Overview

Air is an advanced 3D graphics renderer with a unique architecture and extensive features designed
for the rapid production of high-quality images.  Air is a hybrid renderer, combining the advantages of
scanline rendering - fast rendering of complex scenes, motion blur, and depth of field - with the
flexibility of on-demand ray tracing for accurate reflections, soft shadows, global illumination, and
caustics.

Air supports a broad range of geometric primitives, including polygon meshes, trimmed NURBs,
subdivision meshes, curves, particles, and implicit surfaces.  All primitives are supported in their
natural form; no pre-meshing is required.  Air provides both bump mapping and true ("sub-pixel")
displacement.  8-bit, 16-bit, and floating-point texture maps and environment maps are supported.
High-dynamic range (HDR) images can be used to perform image-based lighting.

Air offers the flexibility of fully programmable shading using the industry-standard RenderMan®
shading language.  Air comes with a collection of shaders, and hundreds more are freely available.
The Air distribution also includes Vshade, a Visual Tool for constructing shaders without programming.

Images rendered with Air may be displayed on the screen using the companion Air Show tool or written
to a file in a variety of graphics file formats.  Air can output multiple images from a single rendering for
efficient multipass rendering.  Air is capable of producing high-quality contours for
cartoon rendering and illustration.

http://www.sitexgraphics.com/html/air_stream.html
http://www.sitexgraphics.com/html/rhino.html
http://www.sitexgraphics.com/html/sketchair.html


AIR User Manual13

© 2001-2014 SiTex Graphics, Inc.

1.1 Installation

Installing Air under Windows

Run the installer to install Air on your machine.  See below for instructions on installing your license file.
If you are trying the Air demo, you do not need to install a license file.

Installing Air under Linux

· Unzip the distribution package to a directory.   For example:

cd /usr/local
unzip airx19.zip

· Declare an AIRHOME environment variable to point to the directory containing the Air installation.  In
the above example, the directory would be /usr/local/air.  For the bash shell:

export AIRHOME=/usr/local/air

      For tcsh or csh:

setenv AIRHOME /usr/local/air

· Add $AIRHOME/bin to the PATH environment variable

· Make both of the above changes to the startup file for your shell - .bashrc for bash, .cshrc for
csh or tcsh.

Installing the RLM license file

When you purchase Air, you will be issued an RLM license file named sitex.lic.   There are two
options for installing the license file:

· Place the license file in the bin directory of your Air installation.  Air will automatically look for a
license file in that location.

· Save the license file to another location and create a SITEX_LICENSE environment variable with the
full path to the license file.

The license file may be a node-locked license or a floating license.  A node-locked license file will not
have a HOST line, and the LICENSE line will include the string 'uncounted'.  If you received a node-
locked license, you are now ready to start using Air.

If you received a floating license, you will need to start the RLM license server.  Here are brief
instructions for starting the RLM server:

· Check the HOST line in the license file and make sure it contains the host name of the server.  If you
see a string such as "localhost" or "hostname", change it to the name of the server.  You may also
change the port number - last number on the HOST line.  Don't change anything else in the file.

· Start the license server from a command shell.  If the RLM license file is saved in the bin directory
of the Air installation, cd to that directory and type:

rlm

If the RLM license file was saved to a different location, start rlm using the -c option and a path to the



Getting Started 14

© 2001-2014 SiTex Graphics, Inc.

license file.  E.g.,

rlm -c c:\mylicenses\sitex.lic

The server should start and you should then be able to render.

Full documentation for the Reprise License Manager can be found in a separate document in the doc
directory of the Air installation.

Network Installation

There are two common methods of organizing Air on a render farm:

Central Installation for Clients and Server

In this approach Air is installed once on a central file server, and the license server and each client
machine reference the same installation.

To use this method, follow the installation instructions above for Windows or Linux to install Air on the
central file server.  Then for each client machine (including the license server):

· Add the bin directory of the Air home directory to the PATH

· Define an AIRHOME environment variable that points to the Air home directory on the server.

· If the RLM license file is not in the bin directory of the Air installation, create a SITEX_LICENSE
environment variable with the port and host name of the license server in the format
port@hostname.  For example:

2192@MYSERVER

The port number is the last number on the HOST line in the RLM license file.

Separate Installation for Each Machine

In this approach Air is installed separately on each machine.

After installing Air, each client machine must be configured to find the license server by defining a
SITEX_LICENSE environment variable with the port and host name of the license server in the format
port@hostname.  For example:

2192@MYSERVER

The port number is the last number on the HOST line in the RLM license file.

1.2 Gamma Correction

It is important to view rendered images with proper gamma correction for the display device.  When
rendering to the Air Show window, use the sRGB button to view a linear image with sRGB gamma
correction.  For more information on color conversion for Air, see the Color section of this document.



AIR User Manual15

© 2001-2014 SiTex Graphics, Inc.

1.3 Rendering

The easiest way to render with Air is use one of the many plugins available for popular modeling and
animation programs.  A plugin will provide a render button or command that automatically exports a
scene and starts an Air rendering process.

Alternatively, the Air Space user interface included with the Windows version of Air can be used to add
materials and lights to a model for rendering with Air.  See the separate Air Space User Manual for
more information.

Command Line Rendering

A RIB scene file can be rendered by starting a standalone Air process from an MS-DOS prompt on
Windows or a command shell on Linux.

The general syntax for invoking Air from the command line is:

air [options] RIBcommand(s) RIBfile(s)

Options, if present, must appear before any commands or filenames.  Depending on the display
settings in the file, AIR will either generate an image file or open a window on the screen.  Any RIB
command may be passed as an argument by enclosing it in braces {}.  For example:

air {Format 320 240 1} myscene.rib

Air accepts multiple commands and/or RIB files.  They are processed in order from left to right.

To abort rendering, press Control-C in the console window or click the close button on the framebuffer
window (if displayed.)

If no file name is included in the command line, Air attempts to read input from stdin.

The Reference section contains a list of command line options. You can view a short list of command
line options with

air -

The user note for Massive on command line rendering introduces several commonly used command
line switches.

Under Windows the 64-bit version of Air can be invoked with

air64 [options] RIBcommand(s) RIBfile(s)

Air Control

AIR Control provides a graphical user interface for setting basic parameters and starting a rendering
process with AIR.

See Also

Command Line Rendering of Massive Scenes
Command Line Switches
Linux Notes



Getting Started 16

© 2001-2014 SiTex Graphics, Inc.

1.4 Linux Notes

Libraries

The user-interface tools such as Air Show and Vshade rely on older versions of GTK, GDK, and
related libraries.  You may need to add the 32-bit version of these libraries to your Linux installation if
they are not already present.  You can see a full list of dependencies with, e.g.,

ldd $AIRHOME/bin/airshow

The air binaries and other command line tools do not depend on GTK, GDK or the related interface
libraries.

1.5 Command Line Switches

You can view an abbreviated list of command line options by starting Air with an argument of -

air -

The following command line arguments are recognized by Air:

-anim nframes (starttime endtime (fractionopen))

Generates a sequence of nframes frame blocks with shutter times for animating time-varying RIB
files.

-at name token value

Define a custom attribute with a string or float value (the equivalent of Attribute "name"
"token" [value]).

-bs width (height)

Sets the size (in pixels) of the buckets or tiles used for rendering.

-columns

Use column bucket order.

-crop left right top bottom

Restricts rendering to a subrectangle.  Each coordinate should lie in the range 0 to 1.  This switch is
equivalent to the CropWindow call with the same coordinates.

-d

Forces the rendered image to appear in Air Show



AIR User Manual17

© 2001-2014 SiTex Graphics, Inc.

-e filename

Saves error messages and warnings to a file.

-echoproc

Echoes the output from any procedural RunPrograms to stdout

-echorif

Echoes the output from any RI filters to stdout

-file imagename

Forces image output to the specified file.  This switch overrides any Display call in the scene.

-frames start end

Restricts rendering to frames numbered between start and end, inclusive.  AIR 8 and later will also
use this range for expanding a frame number range in a RIB file name.E.g.,

air -frames 19 21 scene#4f.rib

would render scene0019.rib, scene0020.rib, and scene0021.rib.

-g n

Sets the default gamma.

-indirect

Enable object visibility to indirect rays.

-ipp

Enabled the indirect diffuse prepass

-mf n

Sets the default value for GeometricApproximation "motionfactor"

-mode rgb|rgba

Selects the channels for output.  This setting may be overridden by a subsequent Display call.

-nodisp

Ignore/suppress Displacement calls.



Getting Started 18

© 2001-2014 SiTex Graphics, Inc.

-noerror

Ignore/suppress all error and warning messages.

-nosurf

Ignore subsequent Surface calls.  The surface shader used will be defaultsurface or the
surface shader declared in an air.rib file in AIRHOME or the local directory.

-nowarn

Suppresses warning messages during rendering

-opp

Enable the occlusion prepass

-opt name token value

Define a custom option with a string or float value (the equivalent of Option "name" "token"
[value]).

-p nthreads (or -threads nthreads)

Sets the number of processor threads to use.  This option overrides any option that sets the number
of threads in the RIB file.  A value of 0 means use all detected processor cores (the default).

-pri priority

Sets the task priority for the renderer under Windows.  Possible values are 0 (normal priority) or -1
(low priority).  Rendering at low priority allows "foreground" applications such as a modeler to run
unimpeded while Air renders in the background.

-Progress

Causes the renderer to print progress information to the standard output stream.  Progress is
reported as a string formated as:

R90000 xxx% mmmK  nnnK tttS

where xxx is the percentage complete, mmm is the current memory used in kilobytes, nnn is the
peak memory used in kilobytes, and ttt is the elapsed time in seconds.

-q8

Set quantization to 8-bit for rgb and rgba output, as well as any channels specified in the -mode
option.

-q16

Set quantization to 16-bit for rgb and rgba output, as well as any channels specified in the -mode



AIR User Manual19

© 2001-2014 SiTex Graphics, Inc.

option.

-qfloat

Set quantization to floating-point for rgb and rgba output, as well as any channels specified in the -
mode option.

-reflect

Enable object visibility to reflection rays.  Shorthand for Attribute "visibility" "integer
trace [1]

-res width (height)

Sets the resolution of the rendered image.  This option overrides any subsequent Format call in the
RIB stream.  If height is omitted, a square image is rendered.

-rif "rifiltername args"

Define a default RIB filter plugin for the scene.

-rows

Use row tile order.

-samples xsamples (ysamples)

Sets the size of the array of geometry samples per pixel.  This option overrides any subsequent
PixelSamples call.

-shadows

Enables object visibilty to shadow rays.  Shorthand for Attribute "visibility" "integer
transmission" [1]

-showpath

Print the full path name for each resource as it is loaded.

-silent

Suppresses the progress report when rendering.

-spiral

Use spiral tile order.

-stats



Getting Started 20

© 2001-2014 SiTex Graphics, Inc.

Print statistics for the rendered scene.

-surf shadername

Overrides all surface shaders with the provided shader.  Shader parameters can be set by including
a comma-separated list:

air -surf plastic,Kd=1,Ks=0 myscene.rib

Only float and string type parameters are supported.

-step n

Specifies an increment to use when rendering animation frames.  For example, if step=2, every
other frame will be renderered.

-vhost ipaddress

Connect to an instance of Vortex executing on the machine at ipaddress.  Not available in the demo
version.

See Also

Command Line Rendering of Massive Scenes

2 What's New

What's new in Air 14.  (For information on prior releases, see the History section.)

· New standalone Air Material Editor for Windows.  See the separate Material Editor help file for more
informatin.

· New material library for Air, which can be found in the materials directory of your Air installation.

· Textures
· All rendering threads now share a single texture cache, which reduces memory use and network

bandwidth and improves performance.
· The default texture cache size is now 64mb total.  In prior releases each thread managed its own

cache, and the default size was 20mb.
· Air can now automatically convert source images to Air texture files internally at render time,

providing the same high-quality texture filtering as that obtained by pre-converting images to Air
texture files for rendering.  Enable this automatic mip-mapping with:

Option "texture "boolean automipmap" [1]

When this features is enabled, Air will resize all source images so the width and height are both a
power of 2.  The following option controls how an image is resized:

Option "texture" "string autoresize" "nearest"

The default resize mode rounds each dimension to the nearest power of 2.  If the resize mode is



AIR User Manual21

© 2001-2014 SiTex Graphics, Inc.

set to "down", each dimension is reduced to the next lower power of 2.  When resize mode is set
to up, the next higher power of 2 is used.  Here are the corresponding output values for a 640x480
input image:

nearest: 512x512
down: 512x256
up: 1024x512

· On Linux some old code that tracked file descriptors has been removed from the texture routines.
· New mktex option to convert an image to an Air texture map without resizing the image to a power

of 2 in each dimension:

mktex -resize none source.tif target.tx

· Mktex has a new blur implementation for environment maps.  The blur value is now an angle in
radians, and blur is supported for lat-long environment maps.  The blurring process can take a
while, so mktex issues a progress message every second.

· Mktex blur is now supported for regular textures.  The blur value is interpreted as a fraction of the
total image area.

· Indirect lighting
· A new option sets the quality of area light sampling for indirect lighting:

Option "indirect" "arealightquality" 0

gives a multiplier applied to the nsamples value for each light.  Replaces the old behavior of
always using only 1 sample for each area light.

· Max indirect samples increased from 1024 to 4096.
· Indirect irradiance cache samples now have their radius of influence clamped based on the

maxpixeldist setting to avoid artifacts with large radii.
· The indirect cache no longer searches higher bounce levels for cache entries when none is found

at the currrent level, for more consistent results.
· New optimizations for indirect irradiance cache management speed up rendering.
· The radiosity cache now works when tracking light channels through indirect bounces (though this

scenario can use a lot of memory).
· Statistics output now includes a stat for radiosity cache efficiency.
· Change to behavior of indirect sampling when maxerror=0 and radiosity cache is enabled to

produce much better indirect estimates at higher bounce levels.  This greatly reduces artifacts and
noise at the expense of longer render time.

· New option to decrease the detail in the radiosity cache at higher levels of indirect lighting (saving
time and memory):

Option "indirect" "reduceradiosityquality" [1]

· New handling of radiosity maps for triangles provides better mapping.
· Increased max radiosity map size to 2048^2.

· Shading:
· New stroke shader type for custom drawing of vector-based outlines.
· Sample strokePencil stroke shader
· New optimization reduces the overhead of networked shaders, saving up to 30% on shading time

for modest to large networks.
· New option to clamp BRDF sampling weights to 1:

Option "render" "boolean clampbrdf" [1]



What's New 22

© 2001-2014 SiTex Graphics, Inc.

   By default BRDF clamping is enabled.

· New displacement shader VWeaveDisplacement based on the VWeave surface shader
· New light shaders distant_window_light and spot_window_light cast light only through a

rectangular opening, with optional panes and texture map.
· New microcylinder() shading function based on "A Practical Microcylinder Appearance Model for

Cloth Rendering" by Sadeghi et al.
· New VCloth and VClothAdvanced surface shaders using the new microcylinder shading model.
· New VLeather surface shader
· New shaders for simulating watercolor painting:  surface VWatercolor, imager WatercolorPaper,

and stroke strokeWatercolorEdge
· New sky_portallight area light shader for windows and other openings admitting sky light.  Using

this shader is more efficient than combining the portallight shader with the envPhysicalSky
environment shader.

· New sun_window_light shader combines the sunlight and distant_windowlight shaders to simulate
sunlight through a window

· New ShowNormal surface shader for viewing the current shading normal.
· New Paper imager shader.
· The envPhysicalSky environment shader now includes a simple ground model illuminated by the

average sky color (sun position dependent).
· Updated VPhysicalMetal shader with explicit IOR and Absorption parameters for more accurate

metal rendering.
· The indirect light shader has a new parameter to provide separate control over the emitted light

intensity when queried by indirect rays.
· Updated VBrick2D and VShinyTile2D surface shaders.
· The VTone surface shader has been updated to better match the Gooch paper on which it is

based ("A Non-Photorealistic Lighting Model for Automatic Technical Illustration")
· The shadow() function now accepts a "maxdist" parameter to limit the distance shadow rays are

traced (measured from the current shading location, not the light source)

· Outlines
· Individual edges of a polygon mesh may now explicitly be included in vector-based outlines by

providing a facevarying "toonedge" prim var of type float in the mesh definition.  Each entry is
either 1 (edge is visible) or 0 (edge is hidden).

· New attribute to allow edges from different objects to be merged and processed together:

   Attribute "toon" "boolean mergeedges" [1]

   Edges are considered to be the same if their end points are within a given tolerance:

   Option "toon" "mergetolerance" [0.01]

· New option to set a maximum edge length (in pixels) for object-based outlines:

Option "toon" "float maxedgelength" [0]

If greater than 0, longer lines are split until the subsegments are small enough.

· BakeAir:
· Baked maps are now rendered in tiles, just like a regular image rendered with Air.  The tile or

bucket size can be set with:

Option "bake" "bucketsize" [64 64]



AIR User Manual23

© 2001-2014 SiTex Graphics, Inc.

· There is now a 64-bit version of BakeAir for Windows - bakeair64.exe

· The indirect prepass is now optimized for BakeAir.
· BakeAir will now execute any declared imager shaders (to allow post rendering color manipulation

such as conversion to sRGB color space).

· Miscellaneous
· A new attribute for setting the bound for an instancer shader:

Attribute "instancerbound" "float sphere" [n]

This replaces the use of the displacement bound attribute for instancer shaders.

· Air's builtin simple command filtering can now filter individual attributes and options
· Frame number formatting in image file names now supports no zero padding, which is now the

default if no padding digit is provided.
· Under Windows the TIFF image readers have been updated to support JPEG and deflate

compression.
· Under Windows 32-bit Air is now limited to a maximum of 32 rendering threads (to avoid a

compiler bug).
· New OpenEXR display driver for 64-bit Air under Windows

· Bug fixes:
· 64-bit Air bug when rendering with more than 32 threads.
· Fix for TweakAir rendering with an Imager shader
· Fix for str_replace_last_number DSO function
· Fix for SimpleMetal, SimplePlastic, VPhysicalPlastic, and VPhysicalMetal shaders to provide

correct per-light channels
· Fix to prevent raw texture color conversion from being incorrectly applied to Air texture maps in

some cases.
· Surface, displacement, and atmosphere shader declarations instanced with an inline archive are

now passed through any relevant rib filter plugin.
· Fix for separate s,t texture data on convex polygon meshes with more than 4 sides on some

faces.
· Fix for diffuse() so all output options supported for Oren-Nayer shading.
· Fix for solar() to avoid illuminating a location that is back-facing when adjacent locations are lit.
· Fix for TweakAir so that a missing texture file does not disable texture access for other instances

of the shader (which may share the same code list)
· Fix for ray attenuation based on ray weight to avoid generating inconsistent results in the

irradiance cache (mostly only a problem when using the cache without a prepass)

3 Color

Obtaining correct results from any renderer depends on the proper handling of color input and output
values.  This section describes how to properly convert colors when rendering with Air.

Linear and sRGB Color Spaces

The computations performed by Air assume that color values are linear, so that say doubling the output
color for a pixel doubles the intensity value.  However, most monitors and printers display images in a
non-linear color space that better matches the response characteristics of the human visual system.
Obtaining linear color values for use with Air will typically require some conversion on the input and the
output sides.

The non-linear aspect of the display color space is often represented as a mathematical function with a



Color 24

© 2001-2014 SiTex Graphics, Inc.

single parameter called gamma.  Typical gamma values can range from 1.8 to 2.4 or more.  In recent
years most manufacturers of devices that display images - such as monitors or printers - or that create
images - such as cameras and scanners -  have adopted the sRGB color space as a standard for
digital images.  The sRGB color space is approximately equivalent to a gamma value of 2.2 - though
that approximation is not very close at the low end of the intensity range.

Input Color Conversion

In order to provide Air with linear color values, color properties selected in a user interface may need to
be converted from the display color space to a linear space.  Your plugin or application should do this
automatically, or have an option to do so.

Texture maps also need to be converted from a display color space if the images are not already
linear.  Here is a comparison of an image in a linear rgb space (left) and sRGB space (right):

   

Linear images will often appear too dark when viewed on a normal monitor without gamma correction.

The Air texture conversion tools - mktex and mktexui - can be used to convert an image from sRGB
color space to linear rgb space.  They can also be used to convert the image to an Air texture file that
is more efficient for rendering.

Air 13 introduces a new option to automatically convert source texture files from sRGB color space.
This option can be enabled by adding the following to a RIB file:

ColorSpace "rawtexture" "sRGB"

when enabled, Air will automatically perform an sRGB to linear conversion for images used as texture
maps that have not been converted to an Air texture file already.  This option does not apply to images
used as environment maps.

Output Color Conversion

The output colors computed by Air are in a linear color space, and they will need to be converted to the
display color space at some point in your pipeline.  When that conversion takes place depends on the
target device and purpose:

Rendering to Air Show



AIR User Manual25

© 2001-2014 SiTex Graphics, Inc.

If you are rendering to Air Show for previewing or final rendering, you can use the sRGB display
button in the Air Show toolbar to view a linear image in sRGB color space.  If possible, select an
option to render 16-bit or floating-point data to avoid banding artifacts that can appear when sRGB
conversion is applied to an 8-bit image.  This may be the only display correction you'll need.  If you
wish to save the image as it is displayed in sRGB space, use the Save as Displayed item in the
File menu.  To save the raw linear image, use the normal Save command.

Rendering to a file for later processing

When rendering to a file for later processing in an image editor or compositor, render linear
images at 16-bit or float precision and apply sRGB conversion after any post-processing.  This
case includes any type of multipass rendering for later compositing.

Rendering a final image

A rendered image that is to be viewed or printed directly should have appropriate display
conversion applied prior to being saved.  Air provides two main ways to do that.  The RIB standard
defines an exposure setting that can be employed to apply a simple gamma factor, typically 2.2 for
an sRGB display device.  Your plugin or user interface should provide an option to set the gamma
value for the rendered image.

For more accurate conversion to sRGB color space, the sRGB imager shader can be used to
convert the computed rgb values to sRGB color space.  Your user interface may or may not
provide an option for using an imager shader.

High Dynamice Range (HDR) Images

The output values computed by Air may include values that outside the unit interval.  The visual
appearance of such high-dynamice range images can be improved by rendering at float precision
and applying a tone mapping operator.

3.1 Spectral Color Definition

Air 10 introduces the ability to specify colors as a spectrum using spectral power distribution (SPD)
files.  SPD files define wave-length dependent reflectance or emission values as piece-wise linear
curve connecting pairs of wavelength and intensity/reflectance values.

Use the following attribute to set the standard Color property with an SPD file:

Attribute "render" "string color_spd" "filename.spd"

A color parameter for a shader can be set via SPD by including a string parameter whose name is the
same as the color parameter with a _spd suffix.  For example,

LightSource "distantlight" 2 "string lightcolor_spd"
"light_CIE_D65_noon_daylight.spd"

The shader doesn't need to do anything with the lightcolor_spd parameter.  Indeed the parameter
doesn't even have to be part of the shader, just included in the RIB shader declaration.

The Air distribution includes a small collection of SPD reflectance and illumination files in the spectra
directory.  A search path for SPD files can be specified using:

Option "searchpath" "string spectrum" ""

Spectral data is converted to an RGB color for rendering.



Color 26

© 2001-2014 SiTex Graphics, Inc.

Illuminant Color Temperature

Air 11 allows the spectral profile for an illuminant to be specified by entering a color temperature as the
SPD file name value.  E.g.,

LightSource "distantlight" 1 "string lightcolor_spd" "2400" # sunset

Solar Spectrum

Air 13 introduces a new capability to define a spectrum using a new builtin sun() function instead of an
SPD file.  There are two forms.  The first is:

"sun(zenith=45,turbidity=5)"

zenith is an angle in degrees giving the sun's elevation measured from the vertical
turbidity is a the same value passed to the sunlight shader.

The second form is:

"sun(month=4,day=15,hour=12,timezone=-8,latitude=47,longitude=-
122,turbidity=5)"

The parameters have the same meaning as those in the sunlight light shader.

This new capability allows spectral prefiltering and chromatic adaptation to work with a sun light.

See Also

Spectral Prefiltering and Chromatic Adaptation

3.2 Spectral Prefiltering and Chromatic Adaptation

Spectral Prefiltering

In "Picture Perfect RGB Rendering Using Spectral Prefiltering and Sharp Color Primaries" Greg Ward
and Elena Eydelberg-Vileshin describe a method of improving the accuracy of RGB rendering without
the performance degradation associated with full spectral rendering.  Their spectral prefiltering
technique is based on a few simple observations:

1. Direct lighting results are the most important for overall image accuracy.
2. Most scenes have a single dominant illuminant.  There may be many light sources, but most

tend to share the same spectral profile.
3. Scenes with spectrally distinct light sources cannot be properly white balanced and will look

"wrong" no matter how accurately the colors are computed.

These observations suggest the following prefiltering algorithm:

"We apply a standard CIE formula to compute the reflected XYZ color of each surface under the
dominant illuminant, then transform this to a white-balanced RGB color space for rendering and
display. The dominant sources are then replaced by white sources of equal intensity, and other
source colors are modified to account for this adaptation. By construction, the renderer gets the
exact answer for the dominant direct component, and a reasonably close approximation for other
sources and higher order components."

In Air spectral prefiltering is enabled by using the following option to specify the dominant illuminant for



AIR User Manual27

© 2001-2014 SiTex Graphics, Inc.

the scene:

Option "render" "string dominantilluminant_spd" ""

Lights with the same spectrum as the dominant illuminant should emit white light.  Other lights will have
their lightcolor_spd (if present) divided by the dominant illuminant to compensate for the material
color premultiplication.  Note that if all lights have the same spectral profile (and default white light
color), adding the above option will effectively change the spectrum of all lights without requiring any
change to the way the lights are declared in the RIB file.

Chromatic Adaptation

Once we start using real spectral data for rendering, we also need to take better account of how the
human visual system processes that data.  According to Ward and Eydelberg-Vileshin:

"there is a strong tendency for viewers to discount the illuminant in their observations, and the color
one sees depends strongly on the ambient lighting and the surround. For example, [our equation]
might compute a yellow-orange color for a white patch under a tungsten illuminant, while a human
observer would still call it 'white' if they were in a room lit by the same tungsten source."

To compensate for the viewer's chromatic adaptation, they suggest transforming color data from the
color space of the dominant illuminant to a that of an illuminant corresponding to the display viewing
conditions.

In Air chromatic adapation is enabled by defining an illuminant for the display viewing conditions with:

Option "render" "string displayilluminant_spd" ""

Chromatic adaptation also requires specification of a dominant illuminant (via the option mentioned
above under Spectral Prefiltering).  For images with an assumed sRGB color space, a D65 display
illuminant   ($AIRHOME/lights/light_CIE_D65_noon_daylight) is an appropriate choice.

SPD Data

Air 10 includes sample SPD data in a new spectra directory.  The lights subdirectory includes
SPD profiles for a number of standard CIE illuminants.  The colors subdirectory contains SPD data
for colors in the Macbeth colorchecker chart.  The metals directory includes a few metallic profiles.

Material Reflectance

When a color value is specified using an SPD file,  the effects of the dominant illuminant and chromatic
adaptation are automatically included in the conversion to RGB.

By default the effects of DI and CA are not applied to colors specified as RGB values.  Those effects
can be included by changing the "current" color space for RGB colors to the special "litRGB" space:

ColorSpace "current" "litRGB"

When current color space is set to "litRGB", spectral prefiltering and chromatic adaptation are
automatically applied to color attributes and shader parameters by first converting the RGB values to a
spectral reflectance and then applying the spectrum-to-rgb conversion used for SPD files.

Shaders that allow the diffuse color to be modulated by a texture map can be modified to include the
effects of spectral prefiltering and chromatic adaptation by converting the texture map color to "current"
space:

color Ct = texture(...);



Color 28

© 2001-2014 SiTex Graphics, Inc.

Ct = ctransform("rgb", "current",Ct);

When current space is "litRGB", the color is transformed as per the description above.  With the default
current space of "rgb", the above transform does not change the input color.

Care must be taken with metallic shaders that use the standard color attribute value to modulate
reflections because the color used to modulate reflections should not include the effects of spectral
prefiltering.  To handle this situation, Air provides an option to query the raw SPD value for the
standard Color attribute:

color spdrgb;
if (attribute("rawcolorspdrgb",spdrgb)==1) {...}

When an SPD file is used to specify the material color, a reflective metal shader should use the raw
rgb value to modulate reflections.

See Also

Spectral Color Definition

3.3 Tone Mapping

Air 11 provides a basic tone-mapping operator, available as a display mode in Air Show and as an
imager shader (ToneMap).

A tone mapping operator converts a high-dynamic range image into a low-dynamic range image for
display.  A tone-mapped image should normally be viewed with sRGB or custom gamma correction or
an equivalent LUT.

The tone-mapping operator in Air Show and the ToneMap imager shader is based on the global
operator described in "Photographic Tone Reproduction" by Erik Reinhard et al.  It has three
parameters:

Middle Luminance:  the input luminance value corresponding to a mid-range grey
Middle Grey:  the output value for the middel luminance (between 0 and 1)
Maximum Luminance:  the input luminance value that should be mapped to 1.

The tone mapping operator is inspired by the zone system in photography. First, the image luminance
is scaled linearly to map the Middle Luminance value to the Middle Grey output value.  The dynamic
range is then non-linearly compressed so that the maximum luminance value is mapped to 1.  If the
maximum luminance parameter value is less than the maximum luminance in the image, sections of
the image will appear overexposed.

For speed Air Show and the ToneMap shader use an approximation that in some cases can produce
output values that are still greater than 1.  The ClampToAlpha parameter in the ToneMap imager
shader can be used to ensure that all output values are less than or equal to 1.

4 Image Quality

High quality images require the elimination of aliasing - artifacts in an image due to undersampling
some aspect of the scene.  AIR provides extensive support for fine-tuning the sampling in a scene.
The following three commands that determine overall image quality:

· The PixelSamples option determines how often the scene's geometry is sampled.



AIR User Manual29

© 2001-2014 SiTex Graphics, Inc.

· The PixelFilter option determines how individual pixel samples are combined into the final
pixel color.

· The ShadingRate attribute determines how often an object's shading is evaluated.

AIR provides independent control over the sampling of geometry and shading. This is an important
capability: for many scenes rendering time is dominated by shading calculations. With AIR you can
increase the sampling of a scene's geometry to smooth out jagged edges without increasing the
number of shading calculations that are performed.

Topics

Geometry Sampling
Shader Sampling
Anti-Aliasing
Pixel Filters
Clamp to Alpha
Field Rendering
Hidden Surface Methods

4.1 Geometry Sampling

The frequency with which scene geometry is sampled is determined by the PixelSamples setting:

PixelSamples xsamp ysamp

which defines a xsamp by ysamp grid used to sample the scene at each pixel.

Use more pixel samples to smooth out jagged edges due to inadequate sampling of scene geometry.
Because geometric sampling is independent of shader sampling, increasing the number of pixel
samples will not usually result in a large increase in rendering time.

Sub-pixel Edge Mask

AIR provides another means of anti-aliasing jagged edges.  If the following option is enabled:

Option "render" "integer edgemask" [1]

AIR will compute a high-resolution sub-pixel edge mask at each pixel sample to better approximate the
area covered by each surface.  The edge mask is particularly effective at anti-aliasing nearly horizontal
and nearly vertical edges as well as capturing very small objects.

Using a sub-pixel edge mask can significantly slow down the renderer because it disables some of the
optimizations normally used by AIR.

4.2 Shader Sampling

The frequency with which an object's shading is computed is determined by the shading rate attribute:

ShadingRate 1

The shading rate gives the area, in pixels, covered by a shading sample.  If the shading rate is R, the
renderer will compute 1/R shading samples per pixel.  When R>1, shading samples are shared
between adjacent pixels.  When R<1, more than one sample is taken for each pixel.

The following images illustrate the effect of varying the shading rate:



Image Quality 30

© 2001-2014 SiTex Graphics, Inc.

ShadingRate 4 (0.25 shading samples per pixel)

ShadingRate 1 (1 shading sample per pixel)

ShadingRate 0.25 (4 shading samples per pixel)

When the shading rate is large and the number of samples is low (as in the top picture), the image
appears blocky, since neighboring pixels share shading samples.



AIR User Manual31

© 2001-2014 SiTex Graphics, Inc.

When the shading rate less than 1 (bottom image), more than one shading sample is taken per pixel,
smoothing the shading.  The bottom two images in the picture look similar, but close examination
reveals that the shadow edges and reflections are smoothed in the image on the right.

The pictures also demonstrate that the rate at which shading is sampled is independent of the rate at
which geometry is sampled.  PixelSamples is 4 4 for all three images, and the geometric edges are
smooth in all of them.

Understanding the difference between geometric sampling and shading sampling and the relation
between the two is key to generating nice, anti-aliased images.  In particular, increasing the number of
pixel samples will not in itself alleviate aliasing in the shading.  On the other hand, increasing pixel
samples to deal with jagged edges doesn't incur any additional shading cost.

Micropolygon Shading

AIR 9 introduces a new method of shading surfaces, enabled with

Attribute "shade" "integer mode" [1]

The new mode breaks surfaces into small polygons (sometimes called micropolygons) for shading,
with each micropolygon covering approximately the area (in pixels) specified by the shading rate.

This new mode may produce smoother images for highly reflective surfaces and may produce
smoother results in slow motion animation.

4.3 Anti-Aliasing

The section describes how to eliminate common sources of aliasing in rendered images.

Jagged Edges

Try one or more of the following suggestions:

· Increase the number of PixelSamples

· Use a smooth PixelFilter with a wide filter width such as

PixelFilter "gaussian" 2 2

· Enable the sub-pixel edge mask

Option "render" "integer edgemask" [1]

Shading Aliasing

Shading can introduce aliasing from a procedural pattern, specular highlights, small bumps, shadow
edges, and other sources.  The simplest way to improve shading quality is to increase the number of
shading samples by lowering the shading rate.  For example, a shading rate of 0.5 will result in two
shading samples per pixel, while a rate of 0.25 will yield 4 shading samples per pixel.

It is more efficient, however, to address the specific source of aliasing if possible.  For example, if
shadow edges are jagged, increasing the number of shadow samples will smooth out the shadows
without requiring the entire shading computation to be performed multiple times.

Shadows



Image Quality 32

© 2001-2014 SiTex Graphics, Inc.

Both ray traced and shadow-mapped shadows can exhibit shading artifacts in the form of jagged
edges or, for blurry shadows, excessive noise.  In both cases increasing the number of shadow
samples will improve shadow quality.  Most light shaders provide parameter to set the number of
shadow samples.

Reflections

Ray-traced reflections may exhibit artifacts in the form of jagged edges or excessive noise.  As with
shadows, increasing the number of samples or rays used will improve image quality.  Most shaders
with reflections include a parameter to setting the number of reflection rays.

4.4 Pixel Filters

Air supports all 5 pixel filters listed in the RenderMan Interface specification:

box
catmull-rom
gaussian
triangle
sinc

Air provides 3 additional filters

disk
mitchell
lanczos

Mitchell Filter

The mitchell filter is similar to the catmull-rom filter except that the mitchell filter has a finite support.
Filter width should be 4 in each direction for the mitchell filter.

Lanczos Filter

The lanczos filter is like a sinc filter with a finite support. Filter width should be 6 in each direction for
the lanczos filter.

4.5 Clamp to Alpha

Output values much greater than 1 can be difficult to adequately filter even with many pixel samples.
To improve filtering of high-dynamic range images, Air will clamp output values to the current alpha
value if the following option is enabled:

Option "render" "integer prefilterclamptoalpha" [1]

When this option is enabled, all output values will be less than or equal to 1.

4.6 Field Rendering

AIR 7 and later can render motion-blurred frames on "fields" if the following option is enabled:

Option "render" "integer fields" 1

Half the motion samples go to field 1, half to field 2, so the results are only fully correct for full frame
motion blur.  For best results pixel samples should be a power of 2 - 4 8 or 16 with



AIR User Manual33

© 2001-2014 SiTex Graphics, Inc.

xsamples=ysamples.

4.7 Hidden Surface Methods

Air supports several primary hidden surface methods.  The method used for a given frame can be
specified using the Hider command:

Hider "name" parameter list

All methods render the image one tile at a time.  The following methods are supported:

Scanline

Hider "hidden"

The scanline method resolves hidden surfaces by scanning polygons and other primitives into a
high-resolution buffer, one row at a time.  Note that this algorithm is not the REYES algorithm used
by some other renderers.

The scanline algorithm employs a raster-based shading cache to avoid re-shading at every pixel
sample.  This method also supports a sub-pixel edge mask for capturing sharp edges and small or
thin objects.

Ray Tracing

Hider "raytrace"

Air 12 introduces a new primary hider using ray tracing.  The ray tracing hider ignores the shading
rate setting - each pixel sample is shaded separately, which will in general take more time than
scanline rendering with the shading cache.  For scenes using ray tracing heavily anyway, the
performance penalty may be modest.  Some new effects are possible with the trace hider such as
shading at different time values for motion blur.  Jittered sampling for motion blur and dof can be
enabled with the following extra parameter:

Hider "raytrace" "jitter" 1

Deep Image

Hider "deepimage"

The deep image hider can store more than one depth sample at each pixel, which is useful for
rendering deep shadow maps or deep images for compositing.

By default the deep image hider stores all surface samples at each pixel.  When rendering deep
images, the hider will remove samples that are occluded by samples closer to the camera when the
following option is enabled:

Hider "deepimage" "culloccluded" [1]

See Also

Deep shadow maps
Deep images



Output 34

© 2001-2014 SiTex Graphics, Inc.

5 Output

An AIR rendering process produces one or more raster images.  Each image is passed to a user-
specified display driver which may save the image to a file or display it in a window.  AIR comes with
display drivers for most common image formats.  A current list of AIR display drivers can be found
here.

A plugin or host application should provide an interface for specifying the output images rendered by
AIR.

In a RIB file an output image is declared using the Display call which has the following syntax:

Display "filename" "drivername" "channels" parameter list

Here's an example:

Display "test.tif" "file" "rgba"

Driver Specification

The driver name is used to select the display driver.  If the driver name is "file", AIR uses the file name
extension to choose a display driver.  When the driver name is "framebuffer", the image is sent to the
AIR Show framebuffer instead of being saved to a file.

Channels

The RenderMan standard specifies 5 standard output channels:  r, g, b, a, and z corresponding to the
red, green, blue, alpha, and depth output values.

AIR also allows any output variable from a surface, displacement, or atmosphere shader to be saved
to a file.  Most AIR surface shaders provide a standard set of output variables described in more detail
in the multipass rendering section.  Each additional output value must have its type declared either
using the Declare RIB statement or an "inline" type declaration in the Display call.  For example:

Declare "__diffuse" "varying color"
Display "diffuse.tif" "file" "__diffuse"

Multiple channels may be specified for a single image with a comma-separated list:

Display "all.tif" "file" "rgba,color __diffuse,color __specular"

The display driver and image format must of course support more than 4 output channels of data.  The
list of display drivers indicates how many channels each driver supports.

Quantization and Image Data Precision

AIR generates all data as 32-bit floating point values.  Depending on the file format used, the image
data may need to be converted to 8-bit or 16-bit precision prior to being passed to the display driver.
The output precision or quantization is set with the RIB Quantize command or by adding a "quantize"
parameter to a Display call.

Quantize "channels" one min max dither
Display ... "float[4] quantize" [zero one min max]

Typical values for 8-bit precision are



AIR User Manual35

© 2001-2014 SiTex Graphics, Inc.

   Quantize "rgba" 255 0 255 0.5
Display "test.tif" "file" "rgba" "float[4] quantize" [0 255 0 255] "float
dither" [0.5]

Typical values for 16-bit precision are

Quantize "rgba" 65535 0 65535 0.5
Display "test.tif" "file" "rgba" "float[4] quantize" [0 65535 0 65535]
"float dither" [0.5]

For floating-point precision use the following values:

   Quantize "rgba" 0 0 0 0
Display "test.tif" "file" "rgba" "float[4] quantize" [0 0 0 0] "float
dither" [0]

Multiple Output Images

Multiple images can be produced from a single rendering by providing additional Display calls with
the file name prepended with a +.  For example:

Display "mp_beauty.tif" "file" "rgba" "quantize" [0 255 0 255]
Display "+mp_diffuse.tif" "file" "varying color __diffuse" "quantize" [0
255 0 255]
Display "+mp_specular.tif" "file" "varying color __specular" "quantize"
[0 255 0 255]

Selecting Channel Components

Sometimes it may be helpful to save only a single channel from a color output variable.  A single
component can be specified by appending an index after the variable name in the Display call.  For
example, the following declaration creates a 3 channel file with the first (red) component of each output
variable:

Declare "__specular" "varying color"
Declare "__diffuse_unshadowed" "varying color"
Declare "__shadow" "varying color"

Display "key.tif" "file"
"__diffuse_unshadowed[0],__shadow[0],__specular[0]"

Per-Frame Display Names

If a display file name contains the special formatting sequence #nf, AIR will automatically substitute
the current frame number for the sequence.  E.g.,

Display "test#4f.tif" "file" "rgb"

would become

Display "test0023.tif" "file" "rgb"

for frame 23.  The frame number is taken from the FrameBegin statement in the RIB file.



Output 36

© 2001-2014 SiTex Graphics, Inc.

5.1 Multipass Rendering

Multipass rendering is a method of improving the efficiency and flexibility of image creation by
rendering different attributes of a scene as separate images.  Rendering in passes allows the final
image to be created by combining and fine-tuning individual passes in a compositing program in real
time without the need to re-render.

Air can produce multiple images from a single render recording arbitrary output values created by a
surface shader, permitting multipass rendering to be accomplished with a single invocation of the
renderer.  Most of the surface shaders included with Air have extra output variables containing a
breakdown of the emitted color into the following components:

Name Description
__ambient ambient color
__diffuse diffuse color
__specular specular color

__reflect reflected color
__refract refracted color
__environment reflected background color

__incandescence self-illuminated color
__constant unlit color

All the above variables are of type color.  Most surface shaders only export a few of these variables.
E.g., a surface without reflections obviously has no need to export a reflection output variable.

Many shaders further break down the diffuse component into 3 parts:

Name Description
__diffuse_unshadowed unshadowed direct lighting
__diffuse_shadow shadowed portion of direct lighting
__indirect indirect lighting

The 3 passes above can be combined to produce a diffuse layer in a compositing program:

__diffuse = (__diffuse_unshadowed - __diffuse_shadow) + __indirect

The __diffuse_shadow variable was introduced in Air 13.  The above relationship is preserved
through the per-pixel compositing and filtering performed by Air, and it is now the preferred method of
breaking down the diffuse component.

Most Air surface shaders also provide a __shadow output variable that computes a shadow value
based on the ratio between the shadowed and unshadowed direct lighting:

__shadow = 1 - (__diffuse - __indirect)/ __diffuse_unshadowed

and the corresponding equation for compositing is:

__diffuse = __diffuse_unshadowed * (1 - __shadow) + __indirect

However, the above relationship is not preserved through filtering and compositing (because the
equation is not linear), and it may lead to artifacts along object edges and in regions with partial
opacity.



AIR User Manual37

© 2001-2014 SiTex Graphics, Inc.

Extra passes in a RIB File

To save an extra output variable, declare the variable and then add an additional Display to the
renderer's output.  For example, you could add the following to a scene file to record a diffuse pass:

Declare "__diffuse" "varying color"
Display "+pic_diffuse.tif" "file" "rgb"
  "quantize" [0 255 0 255]

By default additional output variables are saved as floating-point values.  The optional "quantize"
parameter to the Display call can be used to save 8-bit or 16-bit data instead.  The quantize
parameter consists of 4 floats - zero, one, min and max.  The Display call above records 8-bit data.
A Display call to save 16-bit data would look like:

Display "+pic_diffuse.tif" "file" "rgb"
  "quantize" [0 65535 0 65535]

Multiple variables may also be saved to a single file by providing a comma-separated list of output
variables to a Display call.  For example:

Declare "__diffuse" "varying color"
Declare "__specular" "varying color"
Declare "__reflection" "varying color"

Display "mp.psd" "file" "rgba,__diffuse,__specular,__reflection"
  "quantize" [0 255 0 255]
  "float[2] exposure" [1 1]

Only a few file formats support more than 4 channels of output.  The Photoshop, TIFF, and OpenEXR
drivers can all save additional channels.

Disabling Gamma Correction

Gamma correction should normally be disabled for an image being assembled in a compositing
program.  You can do this by adding an Exposure command at the beginning of a scene file:

Exposure 1 1

or by adding the following parameter to a Display call:

"exposure" [1 1]

Both set gain and gamma correction to 1.

Depth Pass

AIR has a special option for selecting the range of depth values to be saved as part of a multipass
render:

Option "render" "float[2] zrange" [zmin zmax]

If zmin is not equal to zmax, z depth values are scaled so that z is 0 at zmin and 1 at zmax, and
clamped to the range 0..1.

By default AIR filters depth values by taking the minimum depth value in each pixel.  You can apply the
same filtering used for color to depth values by setting the zfilter option:

Option "render" "string zfilter" "normal"



Output 38

© 2001-2014 SiTex Graphics, Inc.

Example

A sample RIB file for rendering multiple passes can be found in

$AIRHOME/examples/multipass

5.2 Rendering in Layers

Rendering in layers refers to the process of rendering different elements or objects in a scene as
separate images, which are used to assemble the final image in a 2D compositing or paint program.

Beginning with version 5, Air supports rendering multiple layers in a single rendering pass by allowing
user selection of the objects that appear in each output image using groups.

Specify the objects visible in a given Display call by providing a "string subset" parameter with
a list of groups:

Display "background.tif" "file" "rgb" "string subset" "ground tree"

Only objects in the listed groups will appear in the display image; other objects will be treated as matte
objects for this image only.

A matte for a set of objects can be generated by rendering an alpha channel for the group:

Display "matte.tif" "file" "a" "string subset" "tree"

Air 11 and later allow a separate group to be specified for each output variable in a multichannel file by
providing a comma-separated list of groups as the subset value.  For example:

Display "all.tif" "file" "rgba,rgba,rgba" "string subset"
",terrain,agents"

An empty entry in the list of groups corresponds to no group subset.  The above Display call would
produce an image with three layers containing, respectively, all objects, terrain objects, and agent
objects.

Examples

A sample RIB file for rendering layers in a single pass:

$AIRHOME/examples/multipass/multilayer.rib

A sample RIB that renders mattes for different elements:

$AIRHOME/examples/multipass/mattes.rib

5.3 Light Channels

Air 5.0 and later provide shaders and shading language functions for per-light output channels from
surface shaders.  Per-light channels can then be combined in a compositing or paint program to
produce a final image.

The availability of per-light output depends on cooperating light and surface shaders.  All Air lights
provide a __channel output variable for per-light output.  Set the __channel parameter to the
channel number in which to store the light's output.  Note that more than one light may share the same



AIR User Manual39

© 2001-2014 SiTex Graphics, Inc.

channel; each channel holds the sum of the illumination of all lights with that channel number.  If you
do not wish to store a per-channel value for a given light, set it's __channel parameter to -1.

Surface shaders provide per-light output as a __lights output variable which is an array of color
values, one color for each channel.  The surface shaders included with Air provide up to 10 channels of
per-light output, with channel numbers 0 to 9.

To save light channels, first declare the __lights array:

Declare "__lights" "varying color[10]"

Each channel can then be referenced using an index into the __lights array in a Display call.  E.g.,

Display "reference.tif" "file" "rgba"
Display "+light_0.tif" "file" "__lights[0]"
Display "+light_1.tif" "file" "__lights[1]"
Display "+light_2.tif" "file" "__lights[2]"

Per-light values should normally be saved with gamma correction disabled (gamma=1).

Detailed Per-Light Channels

Some shaders allow per-light output to be further broken down into diffuse, unshadowed, shadow, and
specular components by providing additional output variables:

Declare "__lights_diffuse" "varying color[10]"
Declare "__lights_unshadowed" "varying color[10]"
Declare "__lights_shadow" "varying color[10]"
Declare "__lights_specular" "varying color[10]"

Display "+diffuse_0.tif" "file" "__lights_diffuse[0]"
Display "+unshadowed_0.tif" "file" "__lights_unshadowed[0]"
Display "+shadow_0.tif" "file" "__lights_shadow[0]"
Display "+specular_0.tif" "file" "__lights_specular[0]"

The VBlinn surface shader provides these additional output variables.

Tracking Light Channels through Reflections

Beginning with AIR 9 most AIR surface shaders with reflections  allow light channels to include the
effects of reflection and refraction.  The AIR shaders look for the following user option to enable light
tracking through reflections:

Option "user" "float reflectlights" [1]

Note that light channel tracking must be explicitly supported by a surface shader.

When this feature is enabled, the __reflect and __refract output variables are no longer
applicable to the composite.  However, the light channels will not include the contribution of the
background environment map for reflections (if any).  The __environment output variable from the
surface shader will contain that contribution.

Tracking Light Channels through Indirect Illumination

AIR 9 and later can track light channels through indirect diffuse light bounces.  This capability is
provided in the indirectchannels light shader, which can be substituted for the indirect light shader
normally used for indirect diffuse illumination.



Output 40

© 2001-2014 SiTex Graphics, Inc.

Shading Language Support for Light Channels

AIR enables shaders to efficiently provide per-light output values with special extensions to the
standard diffuse, specular, phong, blinn, and brushedspecular illumination functions.  These functions
provide a "channels" output variable, an array of colors, containing the function result for each light,
indexed by a light shader's __channel output variable.  A "nchannels" output variable gives the
number of valid channels.  The diffuse() function also provides an "unshadowedchannels" output
with unshadowed diffuse results for each channel.

Example

$AIRHOME/examples/multipass/perlightpasses.rib

5.4 Stereo and Multicamera Rendering

AIR 10 introduces the capability to render images from multiple cameras in a single rendering pass.
Rendering stereo pairs is one possible application of this capability.

Stereo rendering requires two modifications to a typical RIB scene file:

1. Define an additional world-to-camera space transformation for the alternate viewpoint using the
new Camera rib command.

2. Assign the alternate camera to at least one Display call with the new "string camera" extra
parameter.

Here's a simple example:

Display "left.tif" "framebuffer" "rgba"
Display "+right.tif" "framebuffer" "rgba" "string camera" "right"

Projection "perspective" "fov" [ 11.6855 ]

TransformBegin
  ConcatTransform [ ... ] # transform for right view
  Camera "right"
TransformEnd

ConcatTransform [ ... ] # transform for left view

WorldBegin

A Display call with a camera parameter may appear before the definition of the camera
transformation.

Each bucket is rendered once per camera, so with two cameras, each bucket will be rendered twice.
Unlike some other stereo rendering implementations, view-dependent shading computations will be
correct for every camera, and no shader modifications are required.

There should be at least one Display call for each camera, including the main or default camera.
The current implementation assumes that all cameras have approximately the same view of the scene.
Using cameras with very different points of view may produce unexpected results and degrade
performance.

Air Show 5 has a new mode for viewing a stereo pair as an anaglyph image.  When the stereo button
is enabled, Air Show attempts to form a stereo pair with the current image and the following image; if
that fails, Air Show tries the current image and the previous image.  Stereo pairs must have the same
image size, data format, and number of channels.



AIR User Manual41

© 2001-2014 SiTex Graphics, Inc.

Use the Stereo Channels item in the Options menu to select which components of the anaglyph are
taken from the first image.  Once a stereo pair is formed, most display parameters will be synchronized
for the pair.

5.5 Motion Vector Output

The global shader variable dPdtime stores the motion vector at the current shading location.  Typically
the raw vector needs to be converted to a form usable by a 2D application for post-process motion
blur.

The Air distribution includes a ReelSmartMotion surface shader whose output is compatible with the
ReelSmart Motion Blur plugin that illustrates this process.  The source code for the shader can be
found at $AIRHOME/shaders/src/surface/ReelSmartMotion.sl.

5.6 Deep Images

Air 11 introduces a new hider for saving "deep" image data.  The deep image hider allows every
fragment that contribute to a given pixel to be recorded to an output image.

Enable the new hider with:

Hider "deepimage"

When the deep image hider is enabled, the PixelSamples grid is set to 1x1, and the sub-pixel edge
mask is enabled to generate sub-pixel coverage information.

The deepimage hider has one optional parameter:

Hider "deepimage" "boolean culloccluded" [1]

When culloccluded is enabled, Air omits fragments that are completely hidden by surfaces nearer
the camera.

Air includes a deep image display driver that stores deep image data in a simple text file.  Use the
.deeptxt file name extension to select the deep image display driver:

Hider "deepimage" "culloccluded" [0]
Display "test.deeptxt" "file" "rgbaz,subpixelweight" "quantize" [0 0 0 0]

Deep image data can also be saved to any standard image format as a series of layers.  Just include
an extra "deeplayer" parameter in the Display declaration specifying the depth layer to record.  E.g.,

Hider "deepimage" "culloccluded" [0]
Display "layer0.tif" "file" "rgbaz" "float depthlayer" [0]
Display "+layer1.tif" "file" "rgbaz" "float depthlayer" [1]
Display "+layer2.tif" "file" "rgbaz" "float depthlayer" [2]

An image with no transparent surfaces will have at most 16 fragments or layers per pixel.

Air provides two additional output variables for deep images:

· A "float subpixelweight" variable gives the contribution of the current fragment to the final
pixel value.  To reconstruct a final pixel value from a fragment list, take the sum of the product of
each fragment and its sub-pixel weight.



Output 42

© 2001-2014 SiTex Graphics, Inc.

· A "float subpixelmask" variable stores a 4x4 sub-pixel coverage mask as an integer between
0 and 65535.  The sub-pixel mask can be used to accurately handle object edges when performing
operations on deep images.

5.7 Display Drivers

The raster image created by Air is passed to a display driver, which may display it in a window or save
it to disk.  Air comes with the following display drivers:

File Format Device Name Extension Data # Channels

Windows Bitmap bmp .bmp 8-bit 3 or 4

OpenEXR exr .exr float arbitrary

Radiance hdr .hdr float 3

JPEG jpeg .jpg 8-bit 3

Portable Network Graphics png .png 8-bit, 16-bit 1-4

Rich Pixel Format rpf .rpf special special

SGI Image Format sgi .sgi 8-bit, 16-bit arbitrary

AIR Shadow Map shadow .shd float 1

Targa tga .tga 8-bit 3 or 4

AIR Texture Map texture .tx 8-bit,16-bit,float arbitrary

TIFF tiff .tif 8-bit,16-bit,float arbitrary

Photoshop File Format psd .psd 8-bit, 16-bit arbitrary

Softimage PIC pic .pic 8-bit 3 or 4

Deep Image Text File deeptxt .deeptxt float arbitrary

PTEX ptex .ptx 8-bit, 16-bit
half, float

arbitrary

See Also

Output

5.7.1 bmp (Windows Bitmap)

Description:  saves images in Windows Bitmap format

File extension: .bmp

Channels:  single channel or 3 channels (rgb)

Data types:  8-bit unsigned integer

File data:  uncompressed

Parameters:

"float[2] resolution" [x y]

Gives the resolution of the image in x and y in pixels per unit given by resolutionunit.



AIR User Manual43

© 2001-2014 SiTex Graphics, Inc.

"string resolutionunit" ["unit"]

Gives the unit of measurement for the resolution of the image. Unit must be one of inch or
centimeter.

5.7.2 deeptxt (Deep Image Text File)

Description:  saves deep image data to a simple text file

File extension: .deeptxt

Channels:  arbitrary number of channels, and arbitrary fragments per pixel

Data types:  float

File data:  uncompressed ASCII text

5.7.3 exr (OpenEXR)

Description:  saves data in OpenEXR format

File extension: .exr

Channels:  rgba,z

Data types:  float

Parameters:

"string exrpixeltype" ["half"]

Defines the data type in which variables other than r,g,b,a,z are saved.  Supported types are "half"
(16-bit floating point) or "float" (32-bit IEEE floating point).

r,g,b, and alpha channel data is always saved at half precision.  Depth data (z) is always stored at
32-bit float precision.

"string exrcompression" ["zip"]

Compression method: none, rle, zip, zips, piz, piz12

5.7.4 framebuffer

Description:  displays an image in a window in the AIR Show display utility

Channels:  any

Data types:  8-bit unsigned integer, 16-bit unsigned integer, floating point

Parameters:

"integer[2] position" [x y]

Specifies an offset in pixels for the upper left-hand corner of the display window.



Output 44

© 2001-2014 SiTex Graphics, Inc.

"string description" text

Stores an optional description of the image.

5.7.5 hdr (Radiance Image Format)

Description:  saves images in Radiance hdr (high-dynamic range) format

File extension: .hdr

Channels:  3 channels (rgb)

Data types:  floating-point

File data:  compressed

5.7.6 jpeg (JPEG Interchange File Format)

Description:  saves images in JPEG File Interchange Format

File extension: .jpg

Channels:  single channel or 3 channels (rgb)

Data types:  8-bit unsigned integer

File data:  compressed (lossy)

Parameters:

"float[2] resolution" [x y]

Gives the resolution of the image in x and y in pixels per unit given by resolutionunit.

"string resolutionunit" [unit]

Gives the unit of measurement for the resolution of the image. Unit must be one of inch, meter,
centimeter, or none.  The default is none.

"integer quality" [75]

JPEG uses a lossy compression technique; the quality parameter determines how much error is
allowed in the compressed image.  The range is 0 to 100, with 100 providing the highest quality and
the least compression.

5.7.7 pic (Softimage PIC)

Description:  saves images in Softimage PIC format

File extension: .pic

Channels:  3 or 4



AIR User Manual45

© 2001-2014 SiTex Graphics, Inc.

Data types:  8-bit unsigned integer

File data:  uncompressed

5.7.8 png (Portable Network Graphics)

Description:  saves images in Portable Network Graphics format

File extension: .png

Channels:  single channel, single channel plus alpha, rgb, rgba

Data types:  8- or 16-bit unsigned integer

File data:  compressed (lossless)

Parameters:

"integer[2] origin" [x y]

Specifies an offset in pixels for the upper left-hand corner of the image.

"float[2] resolution" [x y]

Gives the resolution of the image in x and y in pixels per unit given by resolutionunit

"string resolutionunit" [unit]

Gives the unit of measurement for the resolution of the image.  Unit must be one of "inch",
"meter", "centimeter", or "none".  The default is none.

"string author" name
"string copyright" text
"string title" title
"string description" text

Each parameter takes a string with the appropriate information.  By default none of these
parameters are included in the output file.

5.7.9 psd (Photoshop)

Synopsis:  saves images in Photoshop file format (including layer information)

File extension: .psd

Channels:  up to 32 channels

Data types:  8-bit or 16-bit unsigned integer

File data:  compressed or uncompressed

Parameters:

"string compression" type



Output 46

© 2001-2014 SiTex Graphics, Inc.

Type is one of "none" or "rle".  By default 8-bit data is compressed using RLE compression.  No
compression is performed on 16-bit data.

Description:

The Photoshop display driver can write a simple Photoshop file with rgb or rgba information or a
layered file with multiple output images ready for compositing in Photoshop or other applications.

Creating a Layered Photoshop File with AIR Control

· Start AIR Control and select the scene to be rendered
· Check Save to File and choose a file name with a .psd extension

· Set Channels to rgba and Precision to 16-bit (preferably) or 8-bit
· Set Image gamma to 1.  (The composited image can always be gamma corrected in Photoshop.)
· Check Extra Output Channels and in single image
· Select the channels to save.  Here are some common combinations

Diffuse, Specular, Reflections
Unshadowed, Shadows, Specular, Reflections (if the scene has no indirect lighting)
Unshadowed, Shadows, Indirect, Specular, Reflections

· Click the green render button

You can also preview the layered image in AIR Show (by checking Display in AIR Show) and then save
it as a psd file.  Set the AIR Show viewing gamma to the same gamma you will later apply to the
composited image (the AIR Show gamma doesn't affect the raw image data).

RIB Commands for Creating a Layered PSD File

Declare "__diffuse" "varying color"
Declare "__specular" "varying color"
Declare "__reflection" "varying color"

Exposure 1 1
Display "mp.psd" "file" "rgba,__diffuse,__specular,__reflection"
  "quantize" [0 255 0 255]

All layers should be of type color (except for AIR's special __toonline output variable which the driver
recognizes as a single float).

5.7.10 ptx (PTEX)

Description:  saves multiple images as a PTEX per-face texture file

File extension: .ptx

Channels:  unlimited

Data types:  8-bit, 16-bit, half, float

File data:  compressed

Parameters:

"float half" [1]



AIR User Manual47

© 2001-2014 SiTex Graphics, Inc.

enables saving data as 16-bit floating point numbers ('half' precision).  The display output
quantization should also be set for float precision when saving half data.

"float makemipmaps" [1]

enables mip-map generation for the created PTEX file.  Each face map will be stored at multiple
resolutions for faster, higher-quality rendering.

See Also

PTEX: Per-Face Texture Mapping
Baking PTEX Textures with BakeAir

5.7.11 rpf (Rich Pixel Format)

Synopsis:  saves data in Rich Pixel Format

File extension: .rpf

Channels:  rgba,z,P,dPdtime,z,s,t

Data types:  various

Parameters:

"string author" name

String identifying the "author" of the image.

"string description" text

Description of the image.

"float bits" [8]

By default R,G,B,A values will be saved as 8-bit values.  To save RGBA data at 16-bit precision pass
the bits parameter to the display call with a value of 16.

Description

RPF files are a useful way to pass extra information about a scene to a compositing package.  In
addition to the color and alpha information stored in most file formats, RPF files can also store depth
values, texture coordinates, surface normals, motion vectors, and object or material identifiers.
Because of the variety of output options available in the RPF driver, it is somewhat more complicated
to set up and use than other display drivers.  Please read the following carefully!

Every file using RPF output should have the following lines before any Display call:

Quantize "rgba" 0 0 0 0
Declare "__gBufferID" "constant float"
Declare "__mBufferID" "constant float"

The Display call must include rgba output.  Additional variables can be included for storing extra
information as a comma-separated list.  Here's an example Display call that includes all optional
output variables:

Display "test.rpf" "rpf"



Output 48

© 2001-2014 SiTex Graphics, Inc.

  "rgba,z,s,t,P,dPdtime,__gBufferID,__mBufferID"

Additional Output Channels

Depth (z)

By including "z" in the Display call, the z-depth of each pixel will be saved at floating-point precision.
Saved values are the camera space z-values multiplied by -1.

Texture Coordinates (s,t)

Two-dimensional texture coordinates can be saved in the file by including "s,t" or "u,v" in the Display
call.  A custom pair of texture coordinates can also be saved by passing the variable names to the
display driver.  E.g.,

Display "rgba,u1,v1"
  "string xcoordname" "u1"
  "string ycoordname" "v1"

Custom texture coordinates must be assigned to an output variable in a surface shader in order to
be saved.

Motion Vector (P,dPdtime)

Include P and dPdtime in the Display call to save a two-dimensional motion vector in the RPF file.
Motion blur has to be enabled for the scene to produce meaningful values.

Material Identifier (__mBufferID)

This identifier will saves an 8-bit channel with a per-material number.  The __mBufferID must be
set by an output variable from a surface shader.  Because the identifier may have been pre-scaled
for other purposes, the RPF driver provides an optional Display parameter for re-scaling the input
value:

"float materialidmultiplier" [1]

Object Identifier (__gBufferID)

This identifier will saves a 16-bit channel with a per-object number.  The __gBufferID must be set by
an output variable from a surface shader.  Because the identifier may have been pre-scaled for other
purposes, the RPF driver provides an optional Display parameter for re-scaling the input value:

"float objectidmultiplier" [255]

5.7.12 tga (Targa)

Description:  saves images in Targa file format

File extension: .tga

Channels:  rgb, rgba

Data types:  8-bit unsigned integer

File data:  uncompressed



AIR User Manual49

© 2001-2014 SiTex Graphics, Inc.

5.7.13 tiff (Tag Image File Format)

Description:  saves images in Tag Image File Format

File extension: .tif

Channels:  up to 32 channels

Data types:  8-, 16-, or 32-bit signed or unsigned integer; IEEE single-precision floating-point

File data:  compressed or uncompressed

Parameters:

"string description" text

Stores an optional description of the image.

"string compression" type

Type is one of "none", "packbits", or "lzw".  By default no compression is used.

On Linux the tiff driver uses the libtiff library installed on the system, which may or may not support
lzw compression.  All modes are supported on Windows.

The default compression type can be set with an AIR_TIFF_COMPRESSION environment variable.
E.g.,

AIR_TIFF_COMPRESSION=lzw

"float[2] resolution" [x y]

Gives the resolution of the image in x and y in pixels per unit given by resolutionunit.

"string resolutionunit" ["unit"]

Gives the unit of measurement for the resolution of the image. Unit must be one of inch or
centimeter.

5.7.14 sgi (SGI Image Format)

Description:  saves images in SGI image format

File extension: .sgi

Channels:  any number

Data types:  8-bit unsigned integer, 16-bit unsigned integer

File data:  uncompressed

Parameters:

"string description" text



Output 50

© 2001-2014 SiTex Graphics, Inc.

Stores an optional description of the image.

5.7.15 shadow (AIR Shadow Map File)

Description:  saves a depth channel as an AIR shadow map file

File extension: .shd

Channels:  z

Data types:  float

File data:  compressed, tiled TIFF

Parameters:

"float append" [1]

Signals the driver to append the current shadow map to the given file.  This option can be used to
generate a cube-face shadow map or an occlusion map without creating temporary depth files.

"float lerp" [1]

Enables smooth interpolation of deep shadow map data when rendered.

5.7.16 texture (AIR Texture Map)

Description:  saves images as AIR texture files (compressed, mip-mapped TIFFs)

File extension: .tx

Channels:  up to 32 channels

Data types:  8-bit or 16-bit unsigned integer; float

File data:  compressed

Parameters:

"float tilesize" size

Size for image tiles.  The default size is 32.

"string wrapmodes" "Xwrap,Ywrap"

Sets the wrap modes in the X and Y directions, which determines how the renderer handles texture
access outside the unit square.  Xwrap and Ywrap should be one of black, clamp, or periodic.
The default value is "clamp,clamp" - which clamps texture values at the boundary.

"float[2] size" [width height]

Explicitly specifies the size of the largest mip-map in the texture file.  Width and height should be a
power of 2 and will be rounded up to a power of 2 if they are not.

"float incremental" [1]

When this parameter value is included in the Display call, the driver expects data in scanline order,



AIR User Manual51

© 2001-2014 SiTex Graphics, Inc.

and writes out each tile as it is completed.  This option minimizes the amount of temporary memory
required when writing large images.

5.8 Custom Display Drivers

Display drivers for AIR are written as dynamically linked libraries on Windows or shared objects on
Linux.  AIR can use display drivers written for PRman, and AIR also has it's own display driver
architecture documented below.

AIR Display Driver Structure

An AIR display driver must implement three functions, defined in the SID.h header file in
$AIRHOME\include.

Required Functions

SID_OpenDisplay

__declspec (dllexport) int SID_OpenDisplay(SID_Info *di, int n,
SID_Parameter *p);

This function is called when the display is opened (usually at WorldBegin).  The SID_Info
structure provides the following information

typedef struct {
  void *globaldata;
  void *localdata;
  char *errmsg;
  int width, height;  /* image width and height */
  float par;          /* pixelaspectratio */
  float gamma;        /* gamma applied prior to final quantization */
  int nch;            /* number of output channels */
  int chtype;         /* channel type */
  char *filename;     /* filename passed to RiDisplay */
  char *modes;        /* modes passed to RiDisplay */
  char *software;     /* string describing software & version, e.g., "AIR
1.0.0" */
} SID_Info;

A display driver will normally allocate a structure to store its internal data and save a pointer to that
structure in localdata.  p points to an array of n parameters passed to RiDisplay.  SIDUtil.h
contains a few helper functions for processing parameters.

Any non-zero return value indicates failure.  You can optionally return a pointer to an error message in
errmsg.

SID_WriteRect

__declspec (dllexport) int SID_WriteRect(SID_Info *di, int xmin, int
xmaxplus1, int ymin, int ymaxplus1, void *data);

The write function is called repeatedly to pass image data to the display routine. di points to the same
structure passed to the open display routine.  xmin, xmaxplus1-1, ymin, and ymaxplus1-1 define the
rectangle of image data.  Currently image data is always passed as complete scanlines, in order from
top to bottom.  data is a pointer to the data for the rectangle, packed bytes in machine byte order.  A
non-zero return value should abort rendering, but this action is not presently implemented.



Output 52

© 2001-2014 SiTex Graphics, Inc.

SID_CloseDisplay

__declspec (dllexport) void SID_CloseDisplay(SID_Info *di);

SID_CloseDisplay is called once to close the display and to allow the driver to free any internal
resources.  di points to the same structure passed to open display.  This function may be called before
all or any of the image has been passed to SID_WriteRect (if the user aborts the render, for example).
It is up to the display driver to handle partially rendered images.  The driver should either produce a
valid image file (perhaps filling in missing image data) or delete an incomplete and invalid file.

Compiling a display driver

A display driver should be compiled as a DLL under Windows or a shared object on Linux.  Exported
function names must be in the DLL, not in a separate LIB file.

Making a driver available

To make a driver available for use by the renderer:

1.  Place the driver in $AIRHOME\displays.

2.  Add a new entry to the driver list in $AIRHOME\displays\displays.txt.  A driver entry is four
comma-separated fields:

devicename,extension,filename,prompt

devicename  name passed to RiDisplay to select this driver
extension   filename extension associated with this driver
filename    name of the driver file
prompt      description of this driver for dialog windows

A sample display driver is available by request.

6 Options

An option is a property of the scene as a whole (in contrast to an attribute  which is a property of an
individual object).  A custom option can be added to a scene file using the Option command:

Option "optionname" "type parameter" [value]

Options must appear before the WorldBegin statement in a RIB file.  Most plugins provide a
mechanism for adding custom options to a scene.

The RenderMan® standard allows custom options to be defined for renderer-specific features.  The
following list enumerates the custom options supported by Air.

Shading

Option "render" "float shadingmultiplier" [1]
Option "render" "integer prmanspecular" [1]
Option "render" "boolean clampbrdf" [1]
Option "noise" "string algorithm" ["air"]
Option "limits" "integer shadingcache" [1024]



AIR User Manual53

© 2001-2014 SiTex Graphics, Inc.

Option "limits" "integer texturememory" [64000]
Option "limits" "integer automapmemory" [10000]

Sampling

Option "render" "integer edgemask" [0]
Option "render" "integer fields" [1]
Option "render" "integer prefilterclamptoalpha" [1]

Ray Tracing

Option "trace" "integer maxdepth" [6]
Option "trace" "float minweight" [0.01]
Option "trace" "float reducesamples" [0.1]
Option "render" "boolean optimizetracememory" [1]

Geometric Representation

Option "limits" "integer splitpolyfaces" [25]
Option "limits" "integer splitmeshfaces" [25]

Runtime Control

Option "limits" "integer nthreads" [0]
Option "runtime" "integer priority" [0]
Option "render" "string bucketorder" ["rows"]
Option "limits" "integer[2] bucketsize" [32 32]
Option "runtime" "string verbosity" ["normal"]

Traced Reflections

Option "reflection" "color background" [0 0 0]
Option "reflection" "string envname" [""]
Option "reflection" "float envstrength" [1.0]
Option "reflection" "integer envsamples" [8]
Option "reflection" "float envblur" [0.0]
Option "reflection" "string envspace" ""

Indirect Illumination

Option "indirect" "integer environmentcache" [0]
Option "indirect" "integer maxbounce" [1]
Option "indirect" "float arealightquality" [0.0]

Option "indirect" "reduceradiosityquality" [0]
Option "indirect" "string radiositysizespace" "world"

Option "indirect" "string savefile" [""]
Option "indirect" "string seedfile" [""]

Option "indirect" "integer prepass" [0]
Option "indirect" "float prepassfactor" [0.5]
Option "indirect" "string prepasschannels" "__lights"
Option "indirect" "string prepassgroup" "list of groups"
Option "render" "syncprepass" [1]

Option "indirect" "color background" [0 0 0]
Option "indirect" "string background_spd" ""
Option "indirect" "string envname" [""]
Option "indirect" "float envstrength" [1.0]



Options 54

© 2001-2014 SiTex Graphics, Inc.

Option "indirect" "integer envsamples" [4]
Option "indirect" "float envblur" [0.0]
Option "indirect" "string envspace" ""

Option "indirect" "moving" [0]

Occlusion

Option "occlusion" "string savefile" [""]
Option "occlusion" "string seedfile" [""]
Option "occlusion" "integer prepass" [0]
Option "occlusion" "float prepassfactor" [0.5]

Spectral Prefiltering and Chromatic Adaptation

Option "render" "string dominantilluminant_spd" ""
Option "render" "string displayilluminant_spd" ""
Option "render" "string currentcolorspace" "rgb"

Caustics

Option "caustic" "string savefile" [""]
Option "caustic" "string seedfile" [""]

Subsurface Scattering

Option "render" "float subsurfacetolerance" [0.005]
Option "render" "integer sssmultithread" [1]
Option "render" "integer sssautocache" [0]
Option "runtime" "integer sssinfo" [0]

Textures

Option "texture" "boolean automipmap" [0]
Option "texture" "string autoresize" "nearest"
Option "texture" "string wrapx" "periodic"
Option "texture" "string wrapy" "periodic"

Toon Rendering

Option "toon" "float maxinkwidth" [0.0]
Option "toon" "float fadethreshold" [0.0]
Option "toon" "float mininkwidth" [0.0]
Option "toon" "float inkwidthmultiplier" [1.0]
Option "toon" "string vectorexportfile" ""
Option "toon" "float mergetolerance" [0.01]
Option "toon" "float maxedgelength" [0]

Network Cache

Option "netcache" "string cachedir" ""
Option "netcache" "integer cachesize" [1000]
Option "netcache" "integer debug" [0]

Baking

Option "bake" "integer[2] bucketsize" [64 64]
Option "bake" "float border" [1]
Option "bake" "integer borderwrap" [1]



AIR User Manual55

© 2001-2014 SiTex Graphics, Inc.

Search Paths

Option "searchpath" "string dirmap" ""
Option "searchpath" "string dirmapzone" ("UNC" for Windows, "NFS" for
Linux)
Option "searchpath" "boolean dirmapdebug" [0]
Option "searchpath" "string texture" ["$AIRHOME/texture"]
Option "searchpath" "string archive" ["$AIRHOME/archives"]
Option "searchpath" "string shader"
["$AIRHOME/usershaders:$AIRHOME/shaders"]
Option "searchpath" "string display" ["$AIRHOME/displays"]
Option "searchpath" "string procedural" ["$AIRHOME/procedurals"]
Option "searchpath" "string spectrum" ["$AIRHOME/spectra"]
Option "searchpath" "string resource" [""]

6.1 Runtime Control

Multithreading

Air can use multiple rendering threads on machines with more than one processor to accelerate
rendering.  The number of threads can be set with a command line option:

air -p 2 myscene.rib

or a custom option in a scene file:

Option "limits" "integer nthreads" [2]

Each extra thread uses some additional memory.

The special value 0 may be used to indicate that all detected processing cores should be used, which
is now the default value.  In Air releases prior to version 10, the default number of threads was 1.

Process Priority

The priority of the rendering process can be set on Windows systems with

Option "runtime" "integer priority" [n]

Valid values are 0 (normal) and -1 (low).  Rendering at low priority allows a foreground application such
as a modeler to run unimpeded while Air renders in the background.

Tiled Rendering

Air renders a scene using small tiles or "buckets".  Bucketed rendering can be very efficient for
rendering large scenes.  The size of the buckets can be set with

Option "limits" "bucketsize" [80 80]

Larger buckets render faster; smaller buckets use less memory.

The order in which buckets are rendered is determined by

Option "render" "string bucketorder" ["rows"]

The default rows order marches from top to bottom across the screen in a zig-zag pattern.  To



Options 56

© 2001-2014 SiTex Graphics, Inc.

minimize memory use for an image that is wider than it is high, use columns order.  "spiral" order
will render from the center of the image outward, allowing the middle of the scene to be viewed sooner.
Different orders usually have different peak memory requirements and different rendering times for a
given scene.

Progress and Statistics Reporting

The following option controls progress and statistics reporting:

Option "runtime" "string verbosity" "normal"

Valid verbosity modes are:

normal Progress report, no statistics

stats Progress report and final stastics

silent No progress report or statistics

silentstats Statistics but no progress report

Identifier Retention

Air normally discards names to save memory and permit better sharing of attributes among primitives.
Some shaders, however, require name information to work properly.  When this option is enabled, Air
will save identifier names so they can be queried by a shader.

Option "render" "integer savenames" [1]

A name can be assigned to a primitive with the following attribute:

Attribute "identifier" "string name" ["name"]

Memory Use

The maximum memory the renderer may use can be set with

Option "limits" "memory" [n]

gives the upper limit in megabytes.  If memory use exceeds the limit, the rendering will be aborted.  By
default there is no upper limit.

6.2 Search Paths

Option "searchpath" "string texture" ["$AIRHOME/texture"]
Option "searchpath" "string archive" ["$AIRHOME/archives"]
Option "searchpath" "string shader"
["$AIRHOME/usershaders:$AIRHOME/shaders"]
Option "searchpath" "string display" ["$AIRHOME/displays"]
Option "searchpath" "string procedural" ["$AIRHOME/procedurals"]
Option "searchpath" "string spectrum" ["$AIRHOME/spectra"]
Option "searchpath" "string resource" [""]

These options set the search path for texture files, archive files, shader files, display drivers, and
procedural primitives respectively.  The resource search path is searched for any resource not found in



AIR User Manual57

© 2001-2014 SiTex Graphics, Inc.

its resource-specific search path.

A path is a colon-separated list of directories.  The & character will be replaced by the current path.  An
environment variable can be included in a path by preceding its name with a $.  For compatibility with
other renderers and operating systems, forward slashes (/) should be used instead of backward
slashes (\) to separate directory names.   A directory name may be preceded by a drive letter followed
by a colon; AIR will distinguish between a colon after a drive letter and a colon used to separate
directories.

Directory Mapping

Air 11 introduces a new directory mapping option for automatically converting path names depending
on the rendering machine's environment:

Option "searchpath" "string dirmap" "list of mappings"

Each mapping is defined by 3 strings within brackets:

[zone frompath topath]

The zone determines when the mapping is applied.  The zone for the current rendering process can be
set with:

Option "searchpath" "dirmapzone" "name"

The default zone is UNC under Windows and NFS under Linux.

When a directory mapping is active, Air checks the beginning of each file name for a match with the
frompath value.  If a match is found, the frompath prefix is replaced by topath.  Here's an example:

Option "searchpath" "dirmap" "[NFS C:/ /usr/local/][UNC /usr/local/ C:/]"

With this mapping, a Windows machine would convert a reference such as

/usr/local/image.png

to

C:/image.png

As an aid to configuring directory mapping, some basic debugging information can be enabled with the
following option:

Option "searchpath" "dirmapdebug" [1]

6.3 Simple RIB Filtering

AIR provides a simple mechanism for disabling specific commands in a RIB stream:

Option "render" "string commands" ["-cmd"]
Option "render" "string commands" ["+cmd"]

The first statement disables the specified command; the second statement re-enables it.

Example:  To override the surface shader for every object in a RIB stream, one could use:

Surface "plastic"



Options 58

© 2001-2014 SiTex Graphics, Inc.

Option "render" "commands" ["-Surface"]

Air 14 extends simple command filtering to allow individual options and attributes to filtered with the
following syntax:

Option "render" "string commands" ["-Option:name:token"]
Option "render" "string commands" ["+Option:name:token"]
Option "render" "string commands" ["-Attribute:name:token"]
Option "render" "string commands" ["+Attribute:name:token"]

Example:

Option "occlusion" "prepass" [0] # disable occlusion prepass
Option "render" "commands" "-Option:occlusion:prepass"

See Also:

RIB Filters

6.4 Shading

Global Shading Rate Multiplier

The frequency with which a surface is shaded is determined by the shading rate attribute.  The
following option serves as a global multiplier for the shading rate property of all objects:

Option "render" "float shadingmultiplier" [1]

Values below one reduce the effective shading rate, increasing the number of shading samples per
pixel for higher image quality at the expense of longer rendering time.  The -sm command line option is
shortcut for this option.

Shading Cache Size

To accelerate rendering AIR stores and reuses shading samples when possible.  The maximum
number of shading samples stored for a single polygon is given by

Option "limits" "integer shadingcache" [1024]

Normally the default works just fine.  For scenes with many output variables and many objects blurred
over large distances onscreen, the memory used by the shading cache can become a significant
factor.  The maximum memory used by the shading cache is reported in AIR's rendering statistics.
Using a lower cache limit will reduce peak memory use at the expense of slower rendering.

Specular Highlight Algorithm

The following attribute can be used to select whether the standard shading language specular function
uses the algorithm defined in the RenderMan Interface specification or an alternate algorithm that
better matches the results of other renderers:

Option "render" "integer prmanspecular" [1]

Noise Algorithm



AIR User Manual59

© 2001-2014 SiTex Graphics, Inc.

AIR 7 includes a new alternative noise algorithm:

Option "noise" "string algorithm" "perlin2"

The perlin algorithm uses higher-order interpolation for better results with displacement.  The new
algorithm is computed at double-precision for better precision at very low frequencies.

The default noise algorithm can be restored with

Option "noise" "string algorithm" "air"

BRDF Clamping

Air 14 introduces a new option to clamp BRDF sampling weights to 1:

Option "render" "boolean clampbrdf" [1]

By default BRDF clamping is enabled.

6.5 Network Cache

AIR 6 and later can optionally create a local copy of texture maps stored on a network drive to speed
texture access.

To enable local caching, provide a directory to use for the local cache with:

Option "netcache" "string cachedir" "cachedirectory"

The directory must exist.  The cache size (in megabytes) can be set with

Option "netcache" "integer cachesize" [1000]

There is also a debugging option:

Option "netcache" "integer debug" [1]

In AIR 8 and later, 3D point maps, brick maps, and point clouds will also use a network cache if
available.

6.6 File Management

These options apply to Linux only.  Air will limit the number of open file descriptors if the following
option is enabled:

Option "runtime" "boolean limitopenfiles" [1]

File descriptor management is currently limited to open texture files only.

The maximum number of open file descriptors can be set with:

Option "runtime" "texturefilepool" [512]



Options 60

© 2001-2014 SiTex Graphics, Inc.

6.7 User-Defined Options

Arbitrary data can be stored in a frame as a "user" option:

Declare "bgenv" "string"
Option "user" "bgenv" "sky.tx"

Use the option() function to query user option values in a shader:

string bgmap="";
if (option("user:bgenv",bgmap)==1) {
}

Default User Options

Air, BakeAir, and TweakAir define a user option with the renderer name, 'air', 'bakeair', or
'tweakair' respectively.

Option "user" "string renderer" "air"

Air 13 and later builds define a user option of type float with the current version number in the format

major.minor

These options may be useful in conditional RIB statements.

See Also

Attributes -> User-Defined Attributes

7 Attributes

Attributes are properties of a particular object, in contrast to options which apply to the scene as a
whole.  A custom attribute is assigned by placing an Attribute command in the scene file prior to
the definition of an object:

Attribute "name" "type parameter" value

Most plugins provide a facility for assigning custom attributes.

The RenderMan® standard allows custom attributes to be defined for renderer-specific features.  The
following list enumerates the custom attributes supported by AIR.  Each attribute links to its description
in this manual.

Lighting

Attribute "light" "integer nsamples" [1]
Attribute "light" "float maxdist" [-1.0]
Attribute "render" "has_shadows" "yes"
Attribute "light" "integer automapsize" [1024]
Attribute "light" "float[4] automapscreenwindow" [0 1 0 1]

Visibility

Attribute "visibility" "integer camera" [1]
Attribute "visibility" "integer transmission" [0]



AIR User Manual61

© 2001-2014 SiTex Graphics, Inc.

Attribute "shade" "string transmissionhitmode" ["primitive"]
Attribute "visibility" "integer trace" [0]
Attribute "visibility" "integer indirect" [0]
Attribute "visibility" "subset" [""]

Motion Blur

GeometricApproximation "motionfactor" [0]
Attribute "dbo" "integer motionsamples" [0]
Attribute "render" "float shutterscale" [1]
Attribute "render" "float shutteroffset" [0]
Attribute "render" "integer adaptivemotionblur" [1]

Ray Tracing

Attribute "trace" "float bias" [0.01]
Attribute "trace" "integer motionblur" [0]
Attribute "trace" "integer displacements" [1]

Displacement

Attribute "render" "integer truedisplacement" [0]
Attribute "displacementbound" "float sphere" [0.0]
Attribute "render" "integer normaldisplacement" [1]
Attribute "render" "integer triangledisplacement" [0]
Attribute "render" "integer smoothlevel" [1]
Attribute "render" "integer meshdisplacement" [1]
Attribute "render" "fastdisplacement" [1]

Indirect Illumination

Attribute "indirect" "float maxerror" [0.0]
Attribute "indirect" "float maxpixeldist" [20]
Attribute "indirect" "integer nsamples" [256]
Attribute "indirect" "string shading" ["shade"]
Attribute "indirect" "float strength" [1]
Attribute "indirect" "color averagecolor" [-1 -1 -1]
Attribute "indirect" "string averagecolor_spd" ""
Attribute "indirect" "float maxhitdist" [1000000000.0]
Attribute "indirect" "integer moving" [0]
Attribute "indirect" "integer reflective" [0]
Attribute "indirect" "integer adaptivesampling" [0]
Attribute "indirect" "integer prepass" [1]

Caustics

Attribute "caustic" "integer ngather" [75]
Attribute "caustic" "float maxpixeldist" [20]
Attribute "caustic" "color specularcolor" [0 0 0]
Attribute "caustic" "color refractioncolor" [0 0 0]
Attribute "caustic" "float refractionindex" [1]
Attribute "caustic" "float dispersion" [0]

Subsurface Scattering / Point Sets

Attribute "pointset" "string handle" ""
Attribute "pointset" "string cachemode" ""

Geometric Approximation



Attributes 62

© 2001-2014 SiTex Graphics, Inc.

Attribute "limits" "integer divisionlevel" [16]
Attribute "divisions" "integer udivisions" [-1] "integer vdivisions" [0]
Attribute "render" "float trimborder" [0]
Attribute "curve" "string type" ["polyline"]
Attribute "point" "string type" ["default"]
Attribute "point" "integer clustermax" [5000]
Attribute "render" "string flatnessspace" "raster"
GeometricApproximation "edgelength" [0]

Toon Rendering

Attribute "toon" "integer id" [-1]
Attribute "toon" "color ink" [0 0 0]
Attribute "toon" "float inkwidth" [1]
Attribute "toon" "float zthreshold" [0.0]
Attribute "toon" "float silhouette" [0.5]
Attribute "toon" "integer frontback" [0]
Attribute "toon" "integer nakededges" [0]
Attribute "toon" "integer faceangle" [0]
Attribute "toon" "boolean mergeedges" [1]

Geometry Export

Attribute "render" "string meshfile" ""
Attribute "render" "integer makePref" [0]
Attribute "render" "integer makeNref" [0]
Attribute "render" "string meshspace" ["world"]

Miscellaneous

Attribute "render" "string color_spd" ""
Attribute "render" "integer runprogramthreads" [1]
Attribute "render" "string ptexcoordinates" "st"

7.1 Visibility

AIR provides several attributes that control where and how an object appears in a rendering.

Camera Visibility

By default all objects are visible from the camera and appear in the final rendered image.

Attribute "visibility" "integer camera" [1]

Set the camera visibility attribute to 0 to hide an object in the rendered image.  Such a hidden object
may still appear in reflections or cast shadows.

AIR's grouping capability can also be used to restrict objects that appear in a rendering to a list of
groups:

Attribute "visibility" "subset" "list of names"

Only primitives in the supplied groups will be visible in the rendered image.

Visibility in Ray-Traced Reflections



AIR User Manual63

© 2001-2014 SiTex Graphics, Inc.

In order for an object to appear in ray-traced reflections, it must be tagged with the following attribute:

Attribute "visibility" "integer trace" [1]

By default all objects are invisible to reflection/trace rays.

The objects that appear in a particular reflection can be further customized by providing a subset of
groups to the shading language functions trace(), environment(), and gather() used to cast reflection
rays.

Visibility for Ray-Traced Shadows

Objects that should cast ray-traced shadows must be made visible to shadow rays with one of the
following attributes:

Attribute "visibility" "integer shadow" [1]
Attribute "visibility" "integer transmission" [1]

By default all objects are invisible to shadow rays.

When a shadow ray strikes an object, AIR uses the following attribute to determine how the object
affects the shadow ray:

Attribute "shade" "string transmissionhitmode" "primitive"

For the default "primitive" mode AIR uses the object's opacity value at the intersection point as the
transmission opacity.  This shortcut saves rendering time by not evaluating the surface shader at the
intersection point.  For surface shaders that compute a complex opacity, the transmission hit mode
should be set to "shader" to force evaluation of the surface shader for shadow rays.  The shader
transmission mode can be much, much slower than the primitive mode.

See Also

Ray Traced Shadows
Ray Traced Reflections

7.2 Sidedness

AIR renders all objects as polygons.  For opaque objects, only those polygons facing the camera need
to be rendered.  For objects that are declared to be one-sided, AIR will remove back-facing polygons.
By default all objects are two-sided, but making objects one-sided can considerably improve
performance.  Make an object one-sided with

Sides 1

7.3 Grouping

AIR 2.3 and later supports grouping of objects for controlling visibility.  Group membership is defined
with

Attribute "grouping" "string membership" "list of names"

The list is a comma- or space-separated list of names.  Membership can be defined relative to the
current setting by prepending the list with a "+" to add groups or a "-" to subtract groups.



Attributes 64

© 2001-2014 SiTex Graphics, Inc.

Groups provide a powerful mechanism for controlling object visbility in a scene, including:

· The visibility subset attribute can be used to define which objects are visible from the camera.

· Shadow casting groups can be used to precisely control which objects casts shadows from a
particular light.

· Reflection groups restrict objects visible in traced reflections from a primitive

· A Display subset selects which objects appear in a particular output image, facilitating
multilayer rendering and rendering of multiple mattes in a single render pass.

Shading Language Support for Groups

Certain ray-tracing functions allow ray hit tests to be restricted to objects in a set of groups.  The
trace(), shadow(), environment(), occlusion(), and areashadow() shading language
functions accept an optional "subset" parameter that contains a list of groups.  Only primitives in the
subset will be tested for ray intersections.

7.4 User-Defined Attributes

Any variable can be declared and associated with a primitive as a "user" attribute:

Declare "fadecolor" "color"
Attribute "user" "fadecolor" [1 1 1]

User attributes can be queried in a shader with the attribute() function.  E.g.,

color fadecolor=0;
attribute("user:fadecolor",fadecolor);

8 Primitives

Air supports all primitives defined in the RI Spec 3.2.  Supported primitives include:

Polygons:  convex and concave polygons with holes, single polygon or indexed meshes

Bilinear patches and patch meshes
Bicubic patches and patch meshes with arbitrary basis functions
NURB patches with trim curves

Catmull-Clark subdivision surfaces

Quadrics:  spheres, tori, cones, cylinders, disks, hyperboloids, paraboloids

Points:  point collections may be rendered as disks, spheres, patches, or particles
Curves:  linear, cubic, and NURB curves can be rendered as polylines, ribbons, or tubes
Blobby blobby implicit surfaces

Procedurals:  generate or load other primitives on-demand at render time

Additional Air-specific primitives:



AIR User Manual65

© 2001-2014 SiTex Graphics, Inc.

Implicit surfaces based on grid data

Volume primitives

Procedure shader primitives

8.1 Approximation of Curved Surfaces

Adaptive Meshing

Air renders objects by converting them to polygons.  By default Air automatically subdivides curved
surfaces based on how they appear on the screen.  The accuracy of the polygonal approximation can
be controlled by giving a maximum deviation of the true surface from the polygon mesh using

GeometricApproximation "flatness" [flatness]

Flatness is given in units of pixels.  The default value is 0.5

Air 11 adds a new criterion for tessellation density:

GeometricApproximation "edgelength" [0]

which gives the maximum length (in object space) for any edge in the resulting mesh.  The default
value of 0 disables this test, which is currently only supported for polygon meshes.  This control may be
useful for increasing mesh density when baking a mesh with BakeAir.

The automatic meshing routine for NURB surfaces repeatedly subdivides a surface until a surface
fragment is flat or a maximum division level is reached:

Attribute "limits" "integer divisionlevel" [16]

The default value is adequate for most surfaces.  A long or complex curved surface may require a
higher value (indicated by sharp corners or gaps in the polygon mesh).

Static Meshing

Air 9 and later allow the flatness tolerance to be applied as an absolute tolerance in object space
instead:

Attribute "render" "string flatnessspace" "object"

The default flatness space is "raster", the only other supported coordinate system.  Using object space
for flatness produces a tessellation for non-deforming objects that does not change with object or
camera position.  A constant tessellation may be useful for cases where changes in tessellation
between frames cause unwanted visual artifacts.

Explicit Meshing

The subdivision of parametric curved surfaces such as NURBs, quadrics, and bicubic patches can be
set explicitly using the following attribute:

Attribute "divisions"
"integer udivisions" [udivisions]
"integer vdivisions" [vdivisions]

udivisions and vdivisions are the number of segments used to represent the object in the u-



Primitives 66

© 2001-2014 SiTex Graphics, Inc.

and v- parametric directions respectively.  Curved primitives will be rendered using udivisions x
vdivisions polygons.  For example,

Attribute "divisions" "udivisions" 12 "vdivisions" 6
Sphere 1 -1 1 360

produces a sphere made of 72 polygons.

Curved primitives that share an edge should have the same number of divisions along the shared edge
to prevent cracks from appearing.

Set udivisions to -1 to restore automatic subdivision.

8.2 Polygons

There are 4 RIB commands for defining polygonal geometry:

Polygon
PointsPolygons

GeneralPolygon
GeneralPointsPolygons

The first two commands should be used only for polygons that are convex and planar.  The second two
commands support concave polygons and polygons with holes at the expense of longer rendering
times (since every polygon is checked for concavity).

Non-planar Quads

Many modeling packages allow the creation of nonplanar 4-sided polygons as part of a polygon mesh.
Such geometry should be passed to AIR using the GeneralPointsPolygons command so that AIR
can properly detect nonplanar quads and convert them to triangles where necessary.  The threshold
used to detect nonplanar quads can be set with

Option "render" "float quadtolerance" [0.99]

Higher values force more quads to be split into triangles.  The maximum value is 1.

Triangulation

The following attribute can be used to force AIR to convert all polygons in a mesh to triangles:

Attribute "render" "integer triangles" [1]

Simplifying Mesh Data

In some cases the memory required for polygon meshes with facevarying data can be reduced by
converting the facevarying data to vertex data with:

Attribute "render" "integer simplifyfacedata" [1]

This optimization is often effective for Massive agents.

Mesh Displacement

AIR usually performs true displacment by splitting a mesh into individual polygons and then displacing
each of the polygons independently on-demand.  AIR 5 introduces a new option to displace an entire



AIR User Manual67

© 2001-2014 SiTex Graphics, Inc.

polygon mesh at once:

Attribute "render" "integer meshdisplacement" [1]

Mesh displacement may take longer to render and use more memory during tessellation, but the
resulting mesh will be smaller, and it will be continuous even if the driving displacement function is
discontinuous.  To help reduce memory with mesh displacement, AIR can automatically split a large
mesh into smaller subregions when the following attribute is enabled:

Attribute "render" "integer splitmesh" [1]

AIR processes the boundaries between regions so that continuity is preserved for the displaced
surface.  The maximum number of faces per region can be set with:

Option "limits" "integer splitpolyfaces" [25]

Automatic Level of Detail

AIR 7 and later can automatically reduce the number of polygons in a polygon mesh based on an
object's on-screen size and other factors. Automatic LOD applies only to polygon mesh primitives.

Enable automatic level of detail for an object with the following custom attribute:

Attribute "render" "float autolod" [n]

where n gives an error tolerance when simplifying a model. Reasonable values to try are 0.1 to 0.3. A
level of 0 disables automatic LOD.

Automatic LOD is also influenced by the "flatness" attribute:

GeometricApproximation "flatness" 0.5

which gives the maximum difference in pixels between the original surface and the simplified surface.
The default flatness value is 0.5. A value of 1 or 2 will produce smaller final meshes.

A reasonable set of values to start with are:

Attribute "render" "float autolod" [0.2]
GeometricApproximation "flatness" 1

8.3 Subdivision Surfaces

AIR supports Catmull-Clark subdivision surfaces with holes and creases.

Creases

Semi-sharp creases are implemented using a new "linear crease" subdivision algorithm, and AIR adds
a new "linearcrease" tag to provide direct control of crease sharpness.  The "linearcrease" tag uses the
same syntax as the standard crease tag.  Linear crease values should lie between 0 (no crease) and 1
(an infinitely sharp crease).

AIR automatically translates "crease" tags into "linearcrease" tags that produce approximately the
same appearance, so AIR will work with existing plugins that export semi-sharp creases using the
"crease" tag.  But because AIR uses a different algorithm than Pixar's PRMan, the two renderers will
not in general produce exactly the same results, though the general look should be similar.

Facevarying Mesh Data



Primitives 68

© 2001-2014 SiTex Graphics, Inc.

AIR provides two methods of interpolating mesh data assigned as "facevarying" (i.e., one value per
vertex per face).  By default AIR will interpolate facevarying data linearly across the face of subdivision
mesh.  This linear interpolation can distort texture coordinates because the position vertices move in
accordance with the subdivision rules while the texture coordinates move respond linearly.  AIR
provides an alternative interpolation that uses "vertex" interpolation for facevarying data whereever
possible (whereever mesh data is continuous), with varying interpolation used only along seams
between regions:

Attribute "render" "integer facevertex" [1]

Tessellation

By default AIR converts an entire subdivision surface to a polygon mesh for rendering in one step.  AIR
5 and later can optionally split a subdivision surface into subregions for tessellation:

Attribute "render" "integer splitmesh" [1]

Tessellating by regions may reduce peak memory use and produce faster rendering in some cases.
The following option gives the maximum number of faces per subregion:

Option "limits" "integer splitmeshfaces" [25]

When split mesh is enabled, AIR has another optimization that allows facevarying data to be simplied
to varying or vertex data on submeshes where possible (ie, where a given vertex has the same values
for each adjoining face):

Attribute "render" "integer simplifyfacedata" [1]

This optimization can reduce memory requirements significantly for objects with facevarying texture
coordinates.

Mesh Displacement

AIR usually performs true displacment by first converting a primitive to a polygon mesh and then
displacing each of the polygons.  AIR 5 introduces a new option to displace an entire subdivision
surface at once:

Attribute "render" "integer meshdisplacement" [1]

Mesh displacement may take longer to render and use more memory during tessellation, but the
resulting mesh will be smaller, and it will be continuous even if the driving displacement function is
discontinuous.

8.4 Points

The Points primitive is useful for efficiently rendering large numbers of  tiny particle-like objects.

By default points are represented as tiny hexagons by the main scanline renderer, and this underlying
geometric representation will be visible if a point is large.  By default the ray tracer treats a point as a
disk oriented perpendicular to the incoming ray.

Points as Patches for Sprites

Beginning with version 4 AIR can render Points primitives as bilinear patches which can be textured
and used as sprites.  Patch/sprite mode is enabled with



AIR User Manual69

© 2001-2014 SiTex Graphics, Inc.

Attribute "point" "string type" ["patch"]

Patches are oriented perpendicular to the camera, unless a per-particle normal N is provided in which
case each point is oriented perpendicular to its normal vector.  If normal vectors are provided, the
primitive may also optionally contain a per-particle vector xaxis defining the horizontal orientation of
the patch.  When present the normal N and horizontal direction xaxis together precisely define the
orientation of each patch.

The size of each patch is taken from the primitives varying width or constantwidth data.  For non-
square patches a Points primitive can include a constant or varying patchaspectratio parameter
giving the width to height ratio for each patch.  If the aspect ratio is less than 1, the patch width is
scaled by the aspect ratio.  If the aspect ratio is greater than 1, the patch height is divided by the
aspect ratio.

Patches can be rotated by including a patchangle parameter, giving the rotation angle in degrees.

Any varying parameters attached to the Points primitive are converted to uniform parameters for the
bilinear patches.

Points as Spheres

AIR 5 and later will render points as true spheres with

Attribute "point" "string type" ["sphere"]

Points as Disks

AIR 8 and later can render points as disks with

Attribute "point" "string type" ["disk"]

If a per-point normal N is provided in the point data, the disk will be oriented perpendicular to the
normal vector.  Otherwise, disks will be oriented perpendicular to the camera for scanline rendering,
and perpendicular to the incoming ray direction when ray tracing.

Point Clusters

To make rendering more efficient AIR 8 and later can divide a large point primitive into smaller
spacially coherent groups called clusters. The maximum number of points in a single cluster can be set
with

Attribute "point" "integer clustermax" [5000]

If the custermax attribute is set to 0, the point primitive will not be subdivided into clusters.

Shading Points

AIR includes a special particle surface shader for shading points that represent small particles for
simulating phenomena like smoke or dust.

8.5 Curves

AIR supports the standard Curves primitive which can be used to define linear or cubic curves as well
as  NuCurves primitive (described below) for rendering NURB curves.

Cubic and NURB curves are converted to a view-dependent linear curve at render time based on the



Primitives 70

© 2001-2014 SiTex Graphics, Inc.

flatness attribute:

GeometricApproximation "flatness" [0.5]

which gives the maximum deviation in pixels allowed in the linear approximation.  Lower flatness
values will produce more accurate curves which use more memory.

Curve Types

AIR supports rendering curves using 3 different representations based on the curve type attribute:

Attribute "curve" "string type" [name]

Where the type name is one of polyline, ribbon, or tube.

Curves as Polylines

Curves are represented internally as a sequence of polyline segments.  This representation of
curves is designed for rendering large numbers of thin hair-like curves rapidly, and it assumes that
curves are at most a few pixels wide on-screen.  Wide curves may exhibit gaps between successive
segments.  The gaps can sometimes be closed by lowering the flatness criterion.  Very wide curves
should be rendered as ribbons (see next curve type).

Curves as Ribbons

The ribbon curve type stores each curve as a strip of rectangles or quads.  The ribbon
representation uses about twice as much memory as the polyine representation of curves.

Curves as Tubes

The tube curve type converts each curve to a generalized tube whose diameter is determined by the
curve width.  To maintain a consistent rotational orientation, the curve data should include a per-
curve or per-vertex normal value N.

Curve Orientation

By default ribbon and polyline curves are oriented to face the incoming view direction.  If a per-curve or
per-vertex normal N is provided in the curve data, the curve will be oriented perpendicular to the
normal vector.  For simple nearly straight curves one normal vector per curve may be sufficient.  For
more complex curves, one normal per vertex should be provided to control the orientation along the
entire curve length.

Shading Curves

When rendering hair or fur it is useful to shade the ribbon-like 3D curves to appear cylindrical to mimic
the appearance of the corresponding natural fiber.  AIR includes two surface shaders designed
specifically to shade hair or fur, VHair and VFur.  The different names aside, either shader may be
used for either hair or fur.

Curve Tapering

Air 13 introduces new attributes that allow curves to be tapered at either or both ends:

Attribute "curve" "string tiptapertype" ["none"]
Attribute "curve" "float tiptaper" [0.5]
Attribute "curve" "string roottapertype" ["none"]
Attribute "curve" "float roottaper" [0.5]



AIR User Manual71

© 2001-2014 SiTex Graphics, Inc.

For tube-shaped curves, tapering seals the end of the tube.  For ribbon curves, tapering produces a
leaf-like shape.

By default no tapering is applied.  The tiptaper and roottaper values determine where along the
curve the tapering begins, based on the tiptapertype or roottapertype selection:

"width":  taper value is multiplied by the curve width
"length": taper value is multiplied by the curve length
"absolute":  taper value is treated as a fixed length

Set the taper type to "none" to disable tapering.

NuCurves

AIR implements a NuCurves primitive for rendering NURB curves in addition to the standard Curves
primitive, which only supports linear and cubic curves.  The RIB syntax for a NuCurves primitive is:

NuCurves [nvertices] [order] [knot] [min] [max] parameterlist

nvertices[i] gives the number of vertices in the i-th curve.

order[i] is the order of the i-th curve.

Each curve has (order[i]+nvertices[i]) knots, and all the knot vectors are concatenated into
the knots array.

min[i] and max[i] define the range of evaluation of the i-th curve.

The parameterlist must contain at least position data (P or Pw). If a normal N is supplied, the
orientation of the curve will adjust to remain perpendicular to the provided normal.  Otherwise, the
curve will be oriented to face the incoming ray direction.

Curve width is specified by either supplying a single "constantwidth" value or a varying "width"
parameter with values for each curve.

Like other primitives arbitrary user defined values can be attached to a NuCurves.  The number of
values for each class of variable is:

constant 1

uniform number of curves

varying sum (nvertices[i]-
order[i]+2)

vertex total number of vertices

8.6 Blobbies and Dynamic Blob Ops

AIR supports all features of the Blobby implicit surface primitive except the repelling ground plane blob
op.

Rendering of blobby primitives can be optimized by using a higher "flatness" criterion to reduce the
density of the polygon mesh produced for rendering.  Flatness is set with:

GeometricApproximation "flatness" [0.5]



Primitives 72

© 2001-2014 SiTex Graphics, Inc.

The default value is 0.5.  Values of 0.7 or 1 can significantly reduce render times and memory use.

Threshold Tag

AIR supports a special "constant float __threshold" tag for Blobbies that sets the distance at
which the surface is defined.  The default value is 0.5 and the usable range is 0.1 to 0.9

Dynamic Blob Ops

In addition to the standard Blobby features, AIR allows users to define custom blob shapes with
Dynamic Blob Ops.  A DBO is written in a programming language such as C and compiled as a DLL on
Windows or a shared object on Linux.  The renderer automatically loads DBOs as they are needed by
Blobby primitives.

DBO Structure

Each DBO must implement the following functions:

void ImplicitBound(State *s, float *bd,
                   int niarg, int *iarg,
                   int nfarg, float *farg,
                   int nsarg, char **sarg);

The ImplicitBound function returns a bounding box for the blob op in *bd.  The bound is six floats in
the order minx maxx miny maxy minz maxz.  Arguments are those passed from the blob definition in
the scene file (see below).

void ImplicitValue(State *s, float *result,
                   float *p,
                   int niarg, int *iarg,
                   int nfarg, float *farg,
                   int nsarg, char **sarg);

The ImplicitValue function returns a scaled distance from point *p to the blob in *result in the
range [0..1].  For blending purposes the surface of the blob is assumed to be at a distance of 0.5.
Points further away than a distance of 1 are not affected by the blob.

void ImplicitRange(State *s, float *rng,
                   float *bd,
                   int niarg, int *iarg,
                   int nfarg, float *farg,
                   int nsarg, char **sarg);

ImplicitRange returns in *rng the range of ImplicitValue results for all points in the bounding box
bd.  If the box is completely outside the influence of the blob, ImplicitRange should return [1 1].

A DBO may optionally have an ImplicitFree function that is called after each blobby has been
processed:

void ImplicitFree(State *s);

Note that ImplicitFree may be called for a blobby even if the blobby does not contain references to
the DBO.

Deformation motion blur is supported for DBOs that implement an ImplicitMotion function:

void ImplicitMotion(State *s, float *movec,



AIR User Manual73

© 2001-2014 SiTex Graphics, Inc.

                    float *pt, float *times,
                    int niarg, int *iarg,
                    int nfarg, float *farg,
                    int nsarg, char **sarg);

ImplicitMotion returns a 3-element vector in *movec that represents the motion of point *pt over
the time interval.  The times parameter points to a 4-element array:

shutter open time,  shutter close time, interval start time, interval end time

Deformation motion blur for a DBO must also be enabled in the RIB file with

Attribute "dbo" "integer motionsamples" [1]

If a DBO does not support deformation blur, it should not implement the ImplicitMotion function, and
the above attribute should not be set.

The State structure contains two fields that uniquely identify the particular Blobby and the op within the
blobby for which the DBO is being queried:

typedef struct {
  int BlobbyId;
  int OpId;
} State;

These values can be used as cache indices if the DBO employs a caching mechanism.

Using Dynamic Blob Ops in a Blobby

A dynamic blob op can be used like any other primitive blob in a Blobby object.  DBOs have two
required parameters and can have an arbitrary number of float, string, or integer parameters that are
passed to the DBO functions.

9000 2 nameix transformix
9000 4 nameix transformix nfloat floatix
9000 6 nameix transformix nfloat floatix nstring stringix
9000 (7+nint) nameix transformix nfloat floatix nstring stringix nint
int_1...int_nint

nameix is an index into the string array for the name of the DBO.  AIR will search the procedure search
path for a DLL or shared object with the corresponding name.

transformix is an index into the float array for a matrix giving the blob-to-object space transformation.

floatix (if present) is the index in the float array of the first of the nfloat float parameters.

stringix (if present) is the index in the string array of the first of the nstring string parameters.

Example:

  Blobby 2 [
    1001 0             # ellipse
    9000 4 0 16 1 32   # plane
    0 2 0 1            # add
   ] [
    1 0 0 0  0 1 0 0  0 0 1 0   4 0 .84 1
   10 0 0 0  0 3 0 0  0 0 1 0   0 0 0 1



Primitives 74

© 2001-2014 SiTex Graphics, Inc.

    2
  ] [ "plane" ]

A sample DBO is included in the AIR distribution in:

$AIRHOME/examples/primitives/blobbies

8.7 Procedurals

Air supports the RunProgram, DelayedReadArchive, and DynamicLoad procedural primitives
defined in the RenderMan standard.  These procedural primitives allow Air to generate or load objects
as they are needed during rendering instead of requiring all objects to be loaded before rendering
begins.  A procedural primitive is created with the Procedural RIB call:

Procedural "proctype" [arguments] [xmin xmax ymin ymax zmin zmax]

The last argument is an array of 6 floats defining a bounding box for all objects that will be created by
the procedural primitive.  When the renderer encounters the bounding volume of a procedural
primitive, Air calls the corresponding procedural function to obtain the contents of the box.  If the
bounding volume is never encountered during rendering, the procedural primitive will never be called.

There are three standard Procedural primitives:

Procedural DelayedReadArchive

The DelayedReadArchive procedural (often abbreviated DRA) is the simplest procedural to use
because it does not require any programming.  A DRA takes the name of a RIB archive as its only
argument.  For example:

Procedural "DynamicLoad" ["teapot.rib"] [-3 3 -2 2 -3 3]

When the procedural is called it simply loads the contents of the specified archive.

Some plugins have a special RIB export mode that creates a separate archive for each object and
main RIB file that references the object archives using DelayedReadArchive procedurals.

Procedural RunProgram

A RunProgram procedural allows an external helper program to be used to generate new objects
during rendering.  A sample RunProgram call looks like:

Procedural "RunProgram" ["maketree" "height 10 width 2 branches 5"] [-2 2
-2 2 0 10]

The first argument is the name of the helper program.  Air automatically adds the .exe extension for
programs under Windows.  Air 8 and later recognize Python and Perl programs by their corresponding
file name extensions and will automatically call the appropriate frontend program to execute those
scripts.  AIR searches the procedural search path for valid RunProgram procedurals.

The second argument is an arbitrary string that is meaningful to the helper program.

The helper program can be written in any programming language that can read from the standard input
stream and write to the standard output stream.  The helper program should be structured as a loop
that waits for a line of input from the standard input stream.

The first time a RunProgram procedural is encountered, Air starts the help program as an external



AIR User Manual75

© 2001-2014 SiTex Graphics, Inc.

process connected to the rendering process using pipes.

Each time an instance of the procedural is encountered, Air sends the argument string from the
instance to the helper program via the helper's standard input stream.  Each argument string is
preceded by a single number representing the approximate area of the procedural's bounding box on-
screen (in pixels).  This detail measure can be used to adapt the level of detail generated by the
procedural to the size of the objects in the rendered image.

The renderer then waits for RIB commands to be sent to the helper program's standard output.  The
helper program must write a byte 255 to stdout when it is done processing the current instance.  On
some systems the helper program may need to flush the output stream to force the final byte to be
sent to the renderer.

The Air distribution includes source code for sample RunProgram procedurals in C and Python in

$AIRHOME/examples/primitives/procedurals

Air 10 and later can execute multiple copies of a RunProgram procedural to accelerate multithreaded
rendering.  The maximum number of RunProgram instances is set with:

Attribute "render" "runprogramthreads" [1]

For the Massive RunProgram procedural, Air will automatically send the scene options string to
multiple instances.  The -rpp switch can be used to set the attribute value on the command line:

air -p 2 -rpp 2 myscene.rib

In Air 11 and later, the RunProgram procedural declaration may omit the bounding box, in which case
the procedural is evaluated immediately.

Procedural DynamicLoad

A DynamicLoad procedural allows a shared object or dynamic link library to directly add objects to the
scene by calling standard RI functions.  A DynamicLoad procedural call is very similar to a
RunProgram call:

Procedural "DynamicLoad" ["maketree" "height 10 width 2 branches 5"] [-2
2 -2 2 0 10]

The first argument is the name of the dynamic object (minus the .so or .dll extension).

The second argument is a string that is meaningful to the DynamicLoad procedural.

The Air distribution includes source code for sample DynamicLoad procedural in

$AIRHOME/examples/primitives/procedurals

Air's support for DynamicLoad procedurals makes use of a DLL (shared object on Linux) that acts as
a bridge between Air and the DynamicLoad DLL/shared object.  This mechanism requires that the
DynamicLoad module be compiled with certain extra options.  The ri.h header file in the include
subdirectory of the Air distribution contains sample compile commands for Windows and Linux.

See Also:

Procedure shaders



Primitives 76

© 2001-2014 SiTex Graphics, Inc.

8.8 Implicit Surfaces

AIR 6 introduces a new Implicit primitive for rendering grid data as an isosurface.

RIB syntax:

Implicit [minx maxx miny maxy minz maxz] [nx ny nz]
   "constant float __threshold" [1]
   "vertex float density" [nx*ny*nz values]
   parameter list

The only required parameter is a list of density values for the 3D grid.  The density value at which the
surface is created can be set by providing a constant __threshold parameter or by using an
attribute:

Attribute "render" "float thresholdmultiplier" [1]

Additional user data can be included in the parameter list in the usual way.  Vertex or varying variables
should have nx*ny*nz values.  Uniform or constant variables should have 1 value.

8.9 Trim Curves

Trim curves are supported, and they require Phong (per-pixel) shading.

"Cracking" between adjacent trimmed surfaces is a common problem when rendering NURB surfaces.
AIR provides a method of patching cracks by allowing the border of a trimmed surface to be slightly
expanded.

Attribute "render" "trimborder" n

gives a distance in uv-space to expand the border of a trimmed NURB surface.

8.10 Instancing with Inline Archives

AIR supports an "inline archive" extension to the RI interface for efficient creation of multiple instances
of the same RIB commands.

ArchiveBegin "identifier"
ArchiveEnd
ArchiveInstance "identifier"

An inline archive block can be used to encapsulate a sequence of RIB commands in a single entity that
can then be efficiently instanced multiple times.  Primitives and shaders declared within an inline
archive will share data across instances of the archive.  RIB options are not currently supported in an
inline archive.

See $AIRHOME/examples/instances for an example.

Freeing Instances

Once created an instance will persist as long as the renderer is running.  If a given instance is no
longer needed, it can be freed with

FreeArchive "identifier"



AIR User Manual77

© 2001-2014 SiTex Graphics, Inc.

which allows AIR to free the memory used by the instance once all references have been processed.

9 Materials

Air 14 includes a new material library for Air.

An Air material consists of the following:

· A surface shader that computes the output color and opacity for an object
· An optional displacement shader that moves the surface to produce bump effects such as ripples,

gouges, or engraving
· An optional instancer shader that adds new entities to the scene near the base object.
· Attributes - or per-object properties - that affect how an object is rendered, such as the base color

and opacity.

Each material is stored in a separate small text file with the extension .amf.

You can use Air materials with most Air-compatible programs, including SketchAir, RhinoAir, and Air
Space.

Standard Material Library

The standard material library can be found in the materials directory of your Air installation.  The
following material types are included:

Brick
2D brick procedural brick patterns in various common sizes.

DarkTrees
Materials for the DarkTree procedural shaders included with Air.

Metals
Shiny, rough, and brushed metals.  Many of the metal colors are specified using a color spectrum
file.

Pavers
Procedural paver patterns in common sizes.

Surfaces
Materials for most of the surface shaders included with Air.

Textiles
Various types of cloth, velvet, and leather.

Tile
Clay and ceramic procedural tile pattern in common sizes.

Material Color

A material file may define a specific color for the material, or it may inherit whatever color has already
been assigned to an object.  The Surface materials in the standard library, for example, simply assign
a diffferent surface shader for an object and do not specify a particular color.



Materials 78

© 2001-2014 SiTex Graphics, Inc.

SketchAir further extends this color inheritance so that any material that does not define a color will
also inherit any color map assigned to a material in SketchUp.  This allows you to assign a custom
surface shader while preserving any texture mapping you may already have performed in SketchUp.

Material Editor

The Windows version of Air includes a stand alone material editor for creating and editing material
files.  The material editor can be accessed from the Tools menu of any of the other Air tools such as
Air Show.

See the separate Air Material Editor User Manual for more information.

10 Shader Guide

AIR uses small programs called shaders to perform shading and lighting calculations.  This
programmable shading capability is one of AIR's most powerful features:  by using a suitable shader,
almost any type of light or surface can be simulated.

Shader Types

AIR supports the following types of shaders:

surface - calculates the color and opacity at a point on a surface.

displacement - moves or "displaces" a surface to simulate topographical features such as bumps,
wrinkles, or grooves.

volume - modifies the light reflected by a surface to account for atmospheric effects such as fog and
smoke.

light - calculates the light emitted from a light source.

environment - shades rays that miss all objects in the scene

imager - modifies final pixel values after rendering is complete.

instancer - creates new geometry on-demand based on the underlying primitive

procedure - creates new geometry on-demand at render time

generic - shader type for components that may be used with different shader types

stroke - custom drawing of vector-based outlines

Using Shaders

If you are using a plugin for a modeling program, some shaders will be used automatically to simulate
the lighting and materials present in the host program.

Most plugins also provide a way to attach custom surface, displacement, and atmosphere shaders to
objects.  AIR comes with a sizable collection of custom shaders, which are documented in the
following sections of this user manual.  The AIR shader library is located in the shaders directory of
your AIR installation.

Because AIR supports the industry standard RenderMan shading language, you can also use any of



AIR User Manual79

© 2001-2014 SiTex Graphics, Inc.

the hundreds of freely available RenderMan shaders available on the web.  New shaders first need to
be compiled with the AIR shading compiler shaded before they can be used.

Each shader has a set of parameters that can be used to control a shader's appearance.  E.g., a tile
floor shader might have parameters for the tile size, tile color, and grout width.  By altering the default
values for a shader's parameters, you can create a variety of different looks from a single shader.

Creating Shaders

AIR shaders are written in the industry-standard RenderMan shading language.

AIR ships with a visual tool for creating shaders called Vshade.  Even if you are not a programmer, you
can easily create shaders with Vshade.  See the separate Vshade documentation for tutorials and hints
on building your own shaders.

Why do many AIR shader names begin with V?

A shader name prefixed with an upper case V indicates that the shader was created with the Vshade
shader creator included with AIR.  You can find the source code for these shaders in the vshaders
subdirectory of your AIR installation.  The source code can serve as a good starting point for building
your own customized version of a shader.

See Also

Shading Language Extensions
Layered Shaders and Shader Networks
Common Shader Features
DarkTree Shaders

10.1 Common Shader Features

Topics:

Illumination Models
3D Patterns
2D Patterns
3D to 2D Projections
Coordinate Spaces

10.1.1 Illumination Models

An illumination model that describes what happens to light that strikes the surface:  whether it is
reflected, transmitted, absorbed or some combination of all three.  Most AIR surface shaders
incorporate one of the following illumination models:

Matte

A matte surface uniformly scatters incoming light with no preferred direction.  The matte illumination
model includes an Ambient parameter, which scales the contributes of ambient light sources, and a
Diffuse parameter, which sets the intensity of the diffusely scattered light from non-ambient light
sources.

Plastic

A plastic surface typically reflects some light diffusely - like a matte surface - and some light in a



Shader Guide 80

© 2001-2014 SiTex Graphics, Inc.

focused manner producing specular highlights.  A plastic illumination model adds parameters for
specular highlights to the base Ambient and Diffuse parameters of the Matte illumination model.

A Specular parameter sets the intensity of the specular highlight.  To be physically plausbile, the sum
of the diffuse and specular intensities should be less than or equal to 1:

Diffuse + Specular < 1

A Roughness or SpecularRoughness parameter determines the size of the highlight (which is inversely
proportional to the roughness value):

0.05 0.2

Although most plastics have white highlights, a surface shader may provide a SpecularColor
parameter for customizing the highlight color.

Metal

A polished metal surface typically reflects a high percentage of the incoming light coherently.  A metal
illumination module provides Ambient, Diffuse, and Specular parameters like the plastic model.  The
Diffuse strength should normally be much less than the Specular value.  For metals the highlight color
is usually the same as the diffuse color, unlike plastics which typically have white highlights regardless
of the diffuse surface color.

Polished metals often exhibit coherent reflections.  Most metal shaders do not apply Fresnel effects to
metallic reflections (varying the reflection strength based on viewing angle) because the Fresnel
phenomenon is much less noticable for metals.  Reflections are typically tinted by the same color as
the diffuse and specular components.

Clay

The clay illumination model is a more general type of matte illumination model.  AIR's shaders use the
model for rough surfaces developed by Michael Oren and Shree Nayar in their SIGGRAPH 94 paper.
This model adds a diffuse roughness parameter to the basic matte illumination model.  When the
roughness value is 0, the clay model produces the same results as the matte illumination model.
Larger values of roughness cause the surface to act more as retroreflector - reflecting light coming
from the same direction as the viewer in a manner that does not depend on the orientation of the
surface.

0.0 0.5

The general effect is to make objects look flatter compared to a simple matte illumination model

Ceramic

The ceramic illumination model is useful for glossy or wet surfaces.  This model is similar to the plastic



AIR User Manual81

© 2001-2014 SiTex Graphics, Inc.

model with the addition of a Sharpness parameter that controls the edge of the specular highlight.
When sharpness is set to 0, the ceramic model produces the same results as the plastic model.  When
sharpness is 1, the highlight edge is maximally sharp.

0.0 0.8

10.1.2 3D Patterns

Solid textures define a pattern for points in 3D space.  Solid textures are used to model materials such
as wood, marble, and granite.  An object shaded with a solid texture looks like it is "carved out" of the
corresponding material.

In order to generate a 3D pattern, a shader must know the coordinates of the point being shaded.
Solid texture shaders usually provide a ShadingSpace parameter for selecting the coordinate system
in which shading calculations are performed.  That coordinate system is referred to as the shading
space for that shader.  It will normally be object, shader, or world space.  (Note that shader space
is the coordinate system in which a shader is declared, which may be different from the shading space
in which calculations are performed.)

Solid texture shaders also usually have a PatternSize, FeatureSize, or ShadingFrequency
parameter that controls the overall size of the 3D pattern.  PatternSize or FeatureSize give the
size of one copy of the pattern in 3D space.  ShadingFrequency sets the size indirectly by specifying
how often the pattern repeats per unit interval.

10.1.3 2D Patterns

2D patterns include texture maps and procedurally generated patterns such as tiles, bricks, stripes,
and dimples.

Each type of geometric primitive has a default mapping for the global s,t texture coordinates.  Some
shaders simply use these s and t global variables as the shading coordinates.   Many are more flexible,
allowing you to choose a projection for transforming a 3D point into 2D texture coordinates.

10.1.4 3D to 2D Projections

The shaders that are included with AIR recognize the following projection types:



Shader Guide 82

© 2001-2014 SiTex Graphics, Inc.

st Use the default s,t texture coordinates

planar Use the x and y components of the point

box Project the point onto a plane orthogonal to the
x,y, or z axes based on the largest component of
the surface normal.  This projection is useful for
walls, boxes, and other shapes with flat sides
that are perpendicular to a coordinate axis.

spherical Project the point onto a sphere centered at the
origin with the poles on the z-axis.  The "latitude"
and "longitude" of the sphere are used as the
texture coordinates.

cylindrical Project the point onto a cylinder wrapped around
the z axis.  The first texture coordinate is the
angle around the axis of the point (measured
counter-clockwise from the x-z plane) scaled to
the range 0-1.  The second texture coordinate is
the z component.

Projection Space

For projection types other than st, the coordinate system for the point used for projection may also
often be chosen (just as the shading space for a solid texture is) using a ProjectionSpace or
equivalent parameter.

Texture Coordinate Transformation

Shaders may also accept a transformation matrix to be applied to the point prior to projection.  The
transformation matrix can be used to scale, translate, rotate, or shear the texture pattern.

10.1.5 Coordinate Spaces

AIR supports hierarchical modeling, in which objects are positioned by applying a series of translation,
rotation, scaling, and arbitrary 3D transformation operations.  Each transformation defines a new
coordinate system.  AIR provides names for those systems or spaces that are commonly used for
shading calculations:



AIR User Manual83

© 2001-2014 SiTex Graphics, Inc.

object Coordinate system in which a geometric
primitive is defined.

shader Coordinate system in which a shader is
declared.

world Coordinate system at WorldBegin, after the
camera has been positioned and before any
transformations for objects have been declared.
(The base coordinate system for a scene.)

camera Coordinate system of the camera.  The camera
is assumed to be at the origin, with the y axis
pointing up, the z-axis pointing in, and the x-axis
increasing to the right.

current The space in which calculations are performed
within shaders.  For AIR current space is camera
space, but current space may be different for
other renderers.

screen Coordinate space after perspective projection
(with z coordinates scaled and offset to 0 at the
near clipping plane and 1 at the far clipping
plane.)

NDC Normalized device coordinates.  A 2D device-
independent coordinate system defined on the
screen, with x running from 0 to 1 left-to-right,
and y increasing from 0 to 1 top-to-bottom.

raster A 2D coordinate system where x and y are the
pixel coordinates of a point after projection to the
screen.

10.2 Displacement

Displacement shaders add small topographical features to a surface such as bumps, wrinkles, or
dents. Your plugin should provide a means of assigning a displacement shader to an object.  If not, you
can add the following line before the object definition in the scene file:

Displacement "shadername"

The AIR distribution includes a number of displacement shaders, and you can write your own using
AIR's Vshade shader creation tool.

Bump Mapping vs. True Displacement

AIR offers two methods of rendering displacements:

Bump mapping:  Displacement is simulated by altering the surface normal.  The surface itself does not
move.

True displacement:  The internal representation of the surface is displaced.



Shader Guide 84

© 2001-2014 SiTex Graphics, Inc.

The two methods differ in cost and appearance.  Bump mapping is faster and uses less memory, but
silhouette edges will not exhibit displacement, and shadows will not reflect the displacement.  True
displacement is slower and potentially uses much more memory because the renderer must dice the
surface down to sub-pixel-size polygons which are then displaced.  However, truly displaced surfaces
will have appropriate silhouettes and shadows.

True Displacement

By default displacement shaders only perform bump mapping.  True displacement is turned on with:

Attribute "render" "integer truedisplacement" [1]

Truly displaced surfaces also need to have a displacement bound set, giving the maximum distance
the surface will be displaced:

Attribute "displacementbound" "float sphere" [radius]

A plugin should provide controls for setting these attributes.

For displacement shaders included with AIR the above instructions are sufficient for true displacement.
Some other displacement shaders also contain a "truedisplacement" parameter, which should be set to
correspond with the truedisplacement attribute.  For true displacement the shader parameter tells
the shader to modify the global position variable P, and the attribute tells the renderer to move the
surface point to the new position.

Displacement Methods

AIR has two methods of performing displacement.  The default method takes the polygon mesh
normally generated for rendering and displaces each facet by dividing it into one or more grids of
micropolygons.  The default method is normally fairly fast and distributes well over multiple processors.
However, it has some drawbacks:

· If the initial tessellation of a curved surface such as a subdivision mesh is too coarse, the
displacement may show artifacts of the initial tessellation.

· With some shaders small differences in the exact values used for displacement along a shared edge
can lead to cracks.

· The default method can be slow if the initial polygon mesh is very dense, since each polygon is
essentially processed a second time as a separate primitive.

To overcome these limitations AIR 5 & 6 introduced a new "mesh displacement" method that displaces
an entire surface at once using a single dense mesh.  Enable mesh displacement with:

Attribute "render" "integer meshdisplacement" [1]

Mesh displacement is supported for subdivision meshes, polygon meshes, and NURB surfaces.  Mesh
displacement can be slower than the default method and use more temporary storage.  The final
displaced mesh usually consumes less memory than the default displacement method.

For subdivision surfaces we recommend using the splitmesh attribute to improve the performance of
mesh displacement.

Attributes and Options

The following attributes and options apply to true displacement:

Attribute "render" "integer normaldisplacement" [1]



AIR User Manual85

© 2001-2014 SiTex Graphics, Inc.

This attribute tells the renderer if displacement takes place only in the direction of the surface normal
- which is usually the case - and that information allows the renderer to employ an additional
optimization.

Attribute "render" "integer triangledisplacement" [0]

When set to 1 this attribute forces the use of triangles instead of quads for displacement meshes,
which may reduce artifacts at the cost of increased rendering times.

Option "limits" "integer displacement grid" [8]

Sets the maximum size of the grid of micropolygons for displacement.

Attribute "render" "integer smoothlevel" [1]

Enables additional smoothing of the normals computed for displaced surfaces when the argument
value is greater than the default of 1.  The range of valid levels is 1 to 6.

Attribute "render" "fastdisplacement" [1]

With the default value of 1, AIR uses a faster displacement method that does not retain the normal
values computed in the shader.  When set to 0, a slower displacement method is used that also
allows bump mapping to be applied after the displacement.

Ray Tracing Displacements

Ray tracing truely displaced surfaces can use a lot of memory because AIR must retain all displaced
geometry for the duration of the render.  To save memory, a surface can be made to displace when it
is rendered from the camera but not when it is ray traced.  To disable displacement for a surface when
it is ray traced, use:

Attribute "trace" "integer displacements" [0]

True Displacement Tips

True displacement can be expensive in terms of memory and rendering times.  Here are some
suggestions for making it somewhat less costly:

· If you do not need to ray-trace a displaced surface, make it invisible to shadow, reflection, and
indirect rays.  AIR can then discard the surface as soon as it has been rendered by the scanline
renderer.  This can have a large effect on memory usage.

· If you want a surface to appear in ray-traced reflections or participate in indirect lighting, disable
true displacement when the object is traced with

Attribute "trace" "integer displacements" [0]

· Use single-sided surfaces if possible.

· The dicing rate for true displacement is inversely proportional to the "flatness" attribute:

GeometricApproximation "flatness" [0.5]

Using values of 0.7 or 1.0 instead will reduce the micropolygon count by approximately a factor of
2 or 4 respectively.



Shader Guide 86

© 2001-2014 SiTex Graphics, Inc.

· Polygons and subdivision meshes usually use less memory than NURB surfaces for true
displacement.

· Use as simple a shader as possible.  E.g., if you only need a simple bump map with standard
texture coordinates, use the standard bumpy shader, which is faster than any custom shader.

· Compile the displacement shader to a DLL on Windows or a shared object on Linux.

10.2.1 Displacement Shaders

Displacement shaders are used to add small topographical features to a surface such as bumps,
wrinkles, or dents.

Texture-Mapped Displacement

bumpy
Simple shader for displacement with a single
texture map using standard texture coordinates

VTexturedBump
Displacement with a single texture map, using
standard texture coordinates or a 3D-to-2D
projection, with control of bump profile

VBumpRegions Multiple regions with different bump maps

Regular Patterns

VBrickGrooves 2D pattern of brick grooves

VPillows 2D pattern of pillow-like bumps

VRibbed 1D pattern of semi-circular bumps

VThreads 2D pattern of screw threads

3D Irregular Patterns



AIR User Manual87

© 2001-2014 SiTex Graphics, Inc.

VDimples pattern of rounded cells

VCracks cracks

VDents dents

VHammered hammered surface

VNicks nicked surface

VRipples ripple-like patterns

VStuccoed stucco

OceanWaves animated ocean waves

Normal Mapping

VNormalMap apply normal map holding object-space
or world-space normals

VTangentNormalMap apply normals stored in tangent space

Additional Displacement Shaders

DarkTreeDisplace
ment

 displacement shader for DarkTree shaders

Displacement Output Variables

All Air displacement shaders provide the following output variables which may be queried by a surface
or atmosphere shader:



Shader Guide 88

© 2001-2014 SiTex Graphics, Inc.

__bump:  the distance the surface was displaced at the current shading location

__undisplaced_N:  the undisplaced normal vector at the current shading location

10.2.2 bumpy

  simple displacement with a texture map

Parameter Default value Range Description

Km 1.0 Displacement amplitude multiplier

texturename "" Texture file name

repeatx 1.0 Copies of texture in X direction

repeaty 1.0 Copies of texture in Y direction

originx 0.0 Location of left texture edge

originy 0.0 Location of top texture edge

Description

The bumpy displacement shader uses a single texture map to displace a surface. The texture map is
positioned using an object's standard texture coordinates.

See Also

VTexturedBump for displacement with a texture map with more controls

10.2.3 DarkTreeDisplacement

  displace using a DarkTree shader



AIR User Manual89

© 2001-2014 SiTex Graphics, Inc.

Parameter Default value Range Description

DarkTreeShader "" Name of Darktree shader

BumpMax 1.0 Bump multiplier

BumpMin 0 Bump at 0

Use2DCoordinates 0 0 or 1 Set to 1 for a 2D pattern using an
object's standard texture coordinates

Texture2dSize 1 1 2D pattern width and height

Texture2dOrigin 0 0 2D pattern origin

TextureAngle 0 Rotation angle in degrees for 2D
pattern

Pattern3dSize 1 Overall scale for 3D pattern

Pattern3dOrigin 0 0 0 3D pattern origin

Pattern3dSpace "shader" spaces Coordinate system for 3D pattern

TimeScale 1.0 Multiplier for global time variable

FloatTweak1Name "" Tweak name

FloatTweak1 0.5 Tweak value

FloatTweak2Name "" Tweak name

FloatTweak2 0.5 Tweak value

FloatTweak3Name "" Tweak name

FloatTweak3 0.5 Tweak value

FloatTweak4Name "" Tweak name

FloatTweak4 0.5 Tweak value

Description

The DarkTreeDisplacement shader allows any DarkTree shader to be used as a displacement shader
in AIR.

The DarkTreeDisplacement shader provides a number of tweak parameters that can be used to alter
the tweaks defined for a particular shader. Some user interfaces, such as AIR Space, will automatically
fill in the list of tweaks for a particular shader. For those that do not, the tweak names and values can
be entered by hand.

2D or 3D Shading

The DarkTree shading pattern can be calculated in 2D or 3D. If the Use2DCoordinates parameter is
set to 1, the base shading location will be (s,t,0), where s and t are the standard 2D texture coordinates
for a primitive.

Animation

DarkTreeDisplacement uses the shading language time value (set with the Shutter RIB call)
multiplied by the TimeScale parameter as the frame number input for DarkTree shaders.  By varying
the time value in the Shutter call, animated DarkTree shaders can be queried at different times.



Shader Guide 90

© 2001-2014 SiTex Graphics, Inc.

See Also

DarkTree overview
DarkTreeSurface shader

10.2.4 OceanWaves

  animated ocean waves

Parameter Default value Range Description

BumpMax 1.0 Displacement amplitude multiplier

GridCountX 128 Grid size in X direction

GridCountY 128 Grid size in Y direction

SizeX 200 Nominal size of X dimension

SizeY 200 Nominal size of Y dimension

WindSpeed 5 Wind speed

WindAlign 8 Wave alignment with wind direction

WindDir 0 Wind direction as an angle in degrees

SmallWave 0.1 Small waves will be ignored

Dampen 0.75 Amount to dampen waves not aligned
with the wind

Chop 1 Amount of chop to add to waves

FramesPerSecond 24 Value used to compute current time for
animation

FoamEnabled 1 0 or 1 Whether foam needs to be simulated
for the surface shader

RandomSeed 123 Base for random number generator

Description

The OceanWaves displacement shader simulates deep ocean waves using the method described in
Jerry Tessendorf's 2004 paper "Simulating Ocean Water".

The waves are computed by evaluating a simulation on a discrete grid, which is mapped to the unit
interval in texture space.  X corresponds to the first texture coordinate, Y to the second coordinates.
The GridCountX and GridCountY parameters give the grid size.  A larger grid produces more detail but
takes longer to compute.

SizeX and SizeY give the nominal size of the ocean area.

The waves can be tiled in X and Y.

WindSpeed gives the average wind speed.  Higher values produce larger waves.  WindDir can be
used to change the wind direction by providing an angle in degrees about the vertical axis.



AIR User Manual91

© 2001-2014 SiTex Graphics, Inc.

WindAlign controls how much the wind direction influences the wave directions by applying an
exponent to the dot product of the wind direction and the direction of each wave.  Larger values reduce
the amplitude of waves not in the direction of the wind base on the Dampen factor.

Chop

The appearance of waves in windy conditions can be improved using the Chop parameter, which
sharpens wave peaks and stretches troughs by shifting the surface laterally.  Because the chop
displacement shifts the surface in arbitrary directions, you'll need to tell Air that the displacement is not
strictly in the direction of the surface normal by applying the following attribute:

Attribute "render" "normaldisplacement" [0]

Note that too much chop can tear the surface apart.

Foam

The waves simulation can compute a foam value which can be used by the companion
OceanSurfaceWithFoam surface shader to add a foam effect to the waves.  In order for the foam to
appear in the proper location, the common parameters between the OceanWaves and
OceanSurfaceWithFoam shaders must be set to the same values.  If you do not need to render foam,
set the FoamEnabled parameter to 0 to reduce computation time for the waves.

Animation

The waves will be animated based on the current frame number.  The current time value is the current
frame number divided by the FramesPerSecond value.

For speed the simulation is computed using the seawave dynamic shadeop (DSO) included with Air.

See Also

OceanSurfaceWithFoam surface shader

10.2.5 VBrickGrooves

  brick grooves



Shader Guide 92

© 2001-2014 SiTex Graphics, Inc.

Name Default Value Range Description

GrooveDepth 0.01 Groove depth

BrickWidth 0.25 Brick width

BrickHeight 0.08 Brick height

MortarWidth 0.01 Mortar width

Stagger 0.5 0.0-1.0 Fraction to offset every other row

EdgeVary 0.01 Unevenness of brick edges

EdgeVaryFrequenc
y

4 Frequency of brick edge unevenness

Projection "st" projections Projection type

ProjectionSpace "world" spaces Coordinate space for 3D to 2D
projections

Transformation[16] 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation matrix

DisplacementSpac
e

"shader" spaces Coordinate space for displacement

Description

The VBrickGrooves displacement shader provides a basic grooved brick pattern.

See Also

VBrick2D surface shader

10.2.6 VBumpRegions

  multiple regions with different bump maps

Parameter Default value Range Description

BumpMax 1 Set this to the max of all
displacements

DisplacementSpace "shader" spaces Coordinate space for
displacement



AIR User Manual93

© 2001-2014 SiTex Graphics, Inc.

FirstBumpMap "" Bump map file name

FirstBumpScale 1 Bump height multiplier

FirstBumpSizeXY 1 1 Width and height of bump map in
texture coords

FirstBumpOriginXY 0 0 Position of top, left texture corner

FirstRegionSizeXY 1 1 Width and height of textured
region

FirstRegionOriginXY 0 0 Top, left corner of textured region

The shader includes 5 more texture regions with analogous parameters.

Description

The VBumpRegions displacement shaders allows up to six different regions on a surface to each
receive a different bump-mapped displacement.  Where regions overlap, the displace offsets are
added together.

The BumpMax parameter does not affect the result of the shader, but some plugins may use it to
automatically set the displacement bounds for true displacement.  This parameter should be set to the
maximum of all the BumpScale parameters (assuming no texture regions overlap).

10.2.7 VCracks

  cracked surface

Parameter Default value Range Description

BumpMax 0.1 Maximum depth of cracks

CrackWidth 0.2 Crack width

Jitter 1.0 0.0-1.0 Deviation from a regular grid

PositionVary 1.0 Variation in initial shading position

PatternSize 0.2

PatternOrigin 0 0 0

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VCracks displacement shader uses a cellular pattern to generate cracks in a surface.

10.2.8 VDents

  dents



Shader Guide 94

© 2001-2014 SiTex Graphics, Inc.

Parameter Default value Range Description

BumpMax 0.02 Maximum depth of dents

Power 3 1-8 Exponent for sharpening bumps

LevelsOfDetail 6 1-8 Levels of detail in dents

PatternSize 0.3 Overall scale of pattern

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VDents displacement shader generates a pattern of dents using a turbulence function.

10.2.9 VDimples

  pattern of rounded cells

Parameter Default value Range Description

BumpMax 0.1 Maximum height of cells

Jitter 1.0 0.0-1.0 Deviation from a regular grid pattern

Power 2 1-5 Power for cell shape

PatternSize 0.2 Pattern size

PatternOrigin 0 0 0 Pattern origin

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VCellBumps displacement shader produces a 3D pattern of similarly sized but irregular rounded
cells.

The overall size of the cells is set by the CellWidth parameter, with the CellHeight parameter
giving the maximum displacement distance.

The Jitter parameter controls deviation from a regular grid:

0.0 0.5 1.0

The Power parameter influences the profile and shape of the cells:



AIR User Manual95

© 2001-2014 SiTex Graphics, Inc.

1 2 4

10.2.10 VHammered

  hammer dents

Parameter Default value Range Description

BumpMax 0.02 Maximum depth of hammered dents

Jitter 1.0 0.01-1.0 Deviation from a regular grid pattern

PatternSize 0.2 Overall scale of pattern

PatternOrigin 0 0 0 Pattern offset

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VHammered displacement shader produces the effect of hammered metal.  The DentSize
parameter sets the overall scale of the pattern.

10.2.11 VNicks

  nicks

Parameter Default value Range Description

BumpMax 0.2 Maximum depth of nicks

Coverage 0.35 0.01-1.0 Fraction of surface covered with nicks

FilterWidth 0.25 Filter width multiplier

PatternSize 0.1 Overall scale of pattern

PatternOrigin 0 0 0 Pattern offset

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VNicks shader produces small nicks in a surface.  The Coverage parameter gives the
approximate fraction of the surface covered with nicks.



Shader Guide 96

© 2001-2014 SiTex Graphics, Inc.

10.2.12 VNormalMap

Apply normal map with normals stored in object space or world space

TextureName "" Texture name

TextureBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

See Also

VTangentNormalMap for normal maps stored in tangent space

10.2.13 VPillows

  pillow pattern

Parameter Default value Range Description

BumpMax 0.05 Maximum height of pillows

TextureSizeXY 0.1 0.1 Size of pillow in X and Y

TextureOriginXY 0 0 Pattern offset in X and Y

TextureAngle 0 Rotation in degrees

DisplacementSpace "shader" spaces Coordinate space for
displacement

Description

The VPillows shader produces a pillowed surface.  The pattern is applied using standard texture
coordinates.

10.2.14 VRibbed

  adds semi-circular bumps to a surface



AIR User Manual97

© 2001-2014 SiTex Graphics, Inc.

Parameter Default value Range Description

Height 0.1 Maximum height of ribs

Frequency 10.0 Number of ribs per texture unit

RotationAngle 0.0 0-180 Angle (in degrees) for rotating pattern

DisplacementSpac
e

"shader" spaces Coordinate space for displacement

Description

The VRibbed displacement shader adds ribs to a surface by displacing it using sem-circles.  The
pattern is applied using the object's standard texture coordinates.  By default the pattern runs along the
first texture coordinate.  The RotationAngle parameter can be used to rotate the pattern on the
surface.

10.2.15 VRipples

  ripple-like bumps

Parameter Default value Range Description

BumpMax 0.1 Maximum ripple height

Roughness 0.5 0.01-1.0 Gain

LevelsOfDetail 2 1-7 Number of octaves of noise

FilterWidth 0.5 Filter width multiplier

PatternSize 0.2 Overall scale of pattern

PatternOrigin 0 0 0 Pattern offset

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VRipples displacement shader produces ripple-like bumps using several levels of noise patterns.

The ripples are computed as a 3D pattern with PatternSize determining the overall size of the
ripples.

LevelsOfDetail sets the number of octaves or levels of noise that are combined to produce the
ripples.  The added detail provided by additional levels can be seen in the following examples:

1 2 3

The Roughness parameter controls how much each level of noise contibutes to the final result.  Lower
roughness values produce a smoother final appearance.  Higher numbers produce a "noisier" result.



Shader Guide 98

© 2001-2014 SiTex Graphics, Inc.

Some examples with LevelsOfDetail=3:

0.3 0.5 0.7

This shader performs anti-aliasing by fading out the ripples as the region being shaded grows large.
Lower FilterWidth values will allow more detail to appear (up to the limit set by LevelsOfDetail),
but the additional detail may cause aliasing in animation.

10.2.16 VStuccoed

  stucco

Parameter Default value Range Description

BumpMax 0.04 Maximum height of bumps

Power 5 1-8 Exponent for sharpening bumps

PatternSize 0.05 Overall scale of pattern

PatternOrigin 0 0 0 Pattern offset

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VStuccoed displacement shader produces a stucco-like pattern using a single noise function
raised to a power.

The Power parameter sharpens the pattern:

1 3 5

10.2.17 VTangentNormalMap

Apply normal map in tangent space

TextureName "" Texture name

TextureBlur 0.0 0.0-1.0 Texture blur



AIR User Manual99

© 2001-2014 SiTex Graphics, Inc.

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

See Also

VNormalMap displacement shader for normals in object or world space

10.2.18 VTexturedBump

  displacement using a texture map

Parameter Default value Range Description

BumpMax 0.1 Maximum displacement amount

BumpMin 0.0 Minimum displacement amount

BumpSharpness 0.5 0.0-1.0 Angle (in degrees) for rotating pattern

BumpBias 0.5 0.0-1.0 Coordinate space for displacement

TextureName "" Texture name

TextureBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VTexturedBump displacement shader uses a texture map to displace a surface.  The texture map
may be placed using standard texture coordinates or any of the standard 3D-to2D projections.

See Also

bumpy displacement shader for very simple bump mapping
VBumpRegions for multiple bump maps per surface

10.2.19 VThreads

  displacement shader for generating screw threads



Shader Guide 100

© 2001-2014 SiTex Graphics, Inc.

Parameter Default value Range Description

BumpMax 0.05 Maximum thread height or depth

DisplacementSpace "shader" spaces Coordinate space for
displacement

Frequency 10 Threads per unit interval

Start 0 Start position of threads along the
vertical axis

End 1 End position along the vertical
axis

FadeZone 0.05 Fade region near start and end

SwapXY 0 If 1, swap X and Y values

Description

The VThreads displacement shader generates a pattern of screw threads (typically along a cylinder).

10.2.20 VWeaveDisplacement

 displacement shader for a weave pattern

Parameter Default Value Range Description

BumpMax 0.1 Multiplier for displacement values

Columns 15 Copies in X direction

ColumnGap 0.5 0.0-1.0 Fractional gap between each column

ColumnWave 0.15 Amplitude for wavy pattern

ColumnRoundness 0.0 Cross-sectional rounding

Rows 10 Copies in Y direction

RowGap 0.3 0.0-1.0 Fractional gap between rows

RowWave 0.2 Amplitude for wavy pattern

RowRoundness 0.1 Cross-sectional rounding

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

DisplacementSpace "shader" space for displacement

Description

The VWeaveDisplacement shader generates a large-scale woven pattern on a surface.  This shader



AIR User Manual101

© 2001-2014 SiTex Graphics, Inc.

may be usefully used in conjunction with the VWeave surface shader.

See Also:

VWeave surface shader

10.3 Environments

Air 11 introduces a new environment shader type for shading rays that miss all objects in the scene.

There is one environment shader or shader network for the entire scene.  The current environment
shader is set with a new RIB Environment command:

Environment "shadername" parameter list

As an option, the Environment statement must appear before WorldBegin in the RIB stream.
Additional environment shaders can be added to the current environment shader list by prepending the
shader name with a "+".

Environment Shader Evaluation

The current environment shader is called automatically in the following cases:

· When a reflection or indirect ray exits the scene.

· For non-opaque pixels in the rendered image, with the ray type defined as a camera ray.  If the
scene also has an imager shader, the imager shader is executed after the environment shader at
each pixel.

Shaders can also explicitly sample the current environment using the environment() call with the
special map name "environment".  The optional "samples" parameter to the environment()
function can be used to super-sample the environment shaders over a cone of directions (defined by
the "blur" parameter).  This brute-force super-sampling can be time-consuming if the environment
shader is computationally intensive.

Environment shaders have access to the ray direction via the global variable I and the ray origin in the
global variable P.  An environment shader should set the output color Ci and output opacity Oi just like
a surface shader.

The behavior of an environment shader can be customized for different ray types by querying the
current ray type with the rayinfo() shading language function.

Environment Cache

Air 12 introduces a new option to automatically build an in-memory cache for environment queries from
indirect rays:

   Option "indirect" "environmentcache" [1]

Using the cache produces much smoother results and is usually at least twice as fast for environment
queries than rendering without.  The only drawback is that the cache is based solely on the direction of
the indirect rays.  If an environment shader varies its computations based on position, that behavior
cannot be accurately captured by the cache, and the cache should not be used in that case.

Past and Future



Shader Guide 102

© 2001-2014 SiTex Graphics, Inc.

In older versions of Air the color returned by a reflection or indirect ray that exited the scene was
determined by a set of custom options that provided a limited range of options (basically a fixed color
or an environment map query).  The new environment shader type provides more flexibility in defining
the color returned by exiting rays as well as a unified interface for all ray types.

If no environment shader is defined, Air 11 reverts to the old custom options for indirect and reflection
rays.  In the future it is likely that these old options will be deprecated entirely.

10.3.1 envColor

simple environment shader returning a constant color

Parameter Default Value Range Description

Color 1 1 1 base color

Intensity 1.0 intensity multiplier for all rays

ReflectionVisibility 1 0 or 1 whether the environment is visible to
reflection rays

ReflectionIntensity 1.0 intensity multiplier for reflection rays

ReflectionTint 1 1 1 color multiplier for reflection rays

IndirectVisibility 1 0 or 1 whether the environment is visible to
indirect rays

IndirectIntensity 1.0 intensity multiplier for indirect rays

IndirectTint 1 1 1 color multiplier for indirect rays

CameraVisibility 1 0 or 1 whether the environment is visible to
camera rays

CameraIntensity 1.0 intensity multiplier for camera rays

CameraTint 1 1 1 color multiplier for camera rays

Description

The envColor environment shader returns a constant color value for each ray type.  The returned color
value can be the same for all ray types, or adjusted individually for each type of ray using the *Intensity
and *Tint parameters.

Output only parameters

color __background environment shader color result

10.3.2 envMap

environment shader with a common environment map for all rays



AIR User Manual103

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

MapName "" file name of environment map

MapIntensity 1.0 intensity multiplier for all rays

MapBlur 0.01 blur for map look up

MapSpace "world" spaces

MapSamples 4 samples for environment map query

RotateX 90 rotation angle in degrees about the X axis

RotateY 0 rotation angle in degrees about the Y axis

RotateZ 0 rotation angle in degrees about the Z axis

ReflectionVisibility 1 0 or 1 whether the environment is visible to
reflection rays

ReflectionIntensity 1.0 intensity multiplier for reflection rays

ReflectionAddBlur 0.0 increment to map blur for reflection rays

IndirectVisibility 1 0 or 1 whether the environment is visible to
indirect rays

IndirectIntensity 1.0 intensity multiplier for indirect rays

IndirectAddBlur 0.0 increment to map blur for indirect rays

CameraVisibility 1 0 or 1 whether the environment is visible to
camera rays

CameraIntensity 1.0 intensity multiplier for camera rays

CameraAddBlur 0.0 increment to map blur for camera rays

Description

The envMap environment shader uses an environment map to compute the color for a query ray.

Use the RotateX, RotateY, and RotateZ parameters to rotate the environment map with respect to the
lookup coordinate space (MapSpace).

Output only parameters

color __background environment shader color result

10.3.3 envPhysicalSky

environment shader with sky color based on position, time, and atmosphere



Shader Guide 104

© 2001-2014 SiTex Graphics, Inc.

SkyIntensity 1.0 overall multiplier for
output color

Turbidity 5 2-9 fraction of
atmospheric
scattering due to
haze instead of
molecules.  Larger
values model
atmospheres with
more large (dust)
particles

DateMonth 4 1-12 month for sun
position

DateDay 15 1-31 day of month for
sun position

DateHour 12 0-24 24-hour value for
sun position (local
time)

LatitudeLongitude 47.45 -122.3 location of observer

TimeZone -8 difference between
local time and GMT

AnimateHour 0 0-24 if non-zero, the end
hour for sun
animation

AnimateTimeScale 1 multiplier for the
global time value

OverrideZenith -1 override for sun
zenith angle (in
degrees)

OverrideAzimuth 0 override for sun
azimuth angle (in
degrees)

GroundDiffuse 0.4 0-1 ground diffuse
reflectance

GroundReflection 0.0 0-1 ground reflections

GroundColor 0.95 1 0.8 ground color

GroundBlendAngle 15 angle in degrees
over which the
ground and sky
transition at the
horizon

CoordSysYisUp 1 0 or 1 if 1, the Y axis is
used as the "up"
direction; otherwise
Z is up

CoordSysNorthAngle 0 north as an angle
in degrees relative
to the x-axis

CoordSysRightHanded 1 0 or 1 is the world space
coordinate system
right-handed?



AIR User Manual105

© 2001-2014 SiTex Graphics, Inc.

Description

The envPhysicalSky shader computes a physically plausible sky function based on observer position,
time, and atmospheric conditions.

The sun position can optionally be expicitly set using the OverrideZenith and OverrideAzimuth
parameters.

Reference:

"A Practical Analytic Model for Daylight" by A. J. Preetham, Peter Shirley, and Brian Smits.

Output only parameters

color __background environment shader color result

See Also

sunlight light shader

10.4 Generics

The generic shader type is compatible with all other shader types.  Use generic shaders to build
components for use with different shader types in shader networks.

genColor shader for selecting a color

genOcclusion shader for adding an occlusion output value to a rendering

genQueryBakedMap shader for querying a baked map

genTextureUV shader for querying a texture map using u,v coordinates

genUserAttributes shader for querying user attributes

genUV simple shader emitting the global u, v coordinates

10.4.1 genColor

generic shader for specifying a color value



Shader Guide 106

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Range Description

Color 0.5 0.5 0.5 rgb color value

Color_spd "" optional file name
for spectral color
profile

ColorName "" optional named
color in dictionary

DictionaryName "$AIRHOME/viztools
/colors.txt"

path for color
dictionary

Description

The genColor shader allows a color to be specified using rgb values, a spectral profile, or a named
color in a color dictionary.

Output only parameters

color __OutColor output color

10.4.2 genOcclusion

generic shader for adding an occlusion output value to a render pass

Description

The genOcclusion shader performs a simple occlusion query using the default occlusion and indirect
settings, providing output variables with the occlusion value and bent normal vector.  Use this shader to
add an occlusion output value to any rendering by appending the shader to the list of surface shaders.
E.g.,

Surface "VPlastic" ...
Surface "+genOcclusion"
PointsPolygons ...

Output only parameters

color __occlusion occlusion value

vector __bent_normal average unoccluded direction (in world space)

See Also

Lighting -> Ambient Occlusion

10.4.3 genQueryBakedMap

generic shader for querying a baked map



AIR User Manual107

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Range Description

AttributeName "user:bakedmap" user attribute to
query for baked
map name

DefaultColor 0.5 0.5 0.5 default color to emit
if no baked map

Channel 0 first channel to
query

Description

The genQueryBakedMap generic shader can be used to query a map baked using Air Stream.

Output only parameters

color OutputColor output color

float OutputRed red component

float OutputGreen green component

float OutputBlue blue component

float OutputAlpha alpha component

10.4.4 genTextureUV

generic shader that queries a texture map using standard u,v coordinates

Parameter Default Range Description

TextureName "" texture map

DefaultColor 0 0 0 default color value

DefaultAlpha 0 default alpha value

Description

The genUV shader exports the standard u, v coordinates assigned to an object.

Output only parameters

color Color emitted color

float Alpha emitted alpha

float Grey grey value (average of r,g,b)

10.4.5 genUserAttributes

generic shader for querying float and color user attributes



Shader Guide 108

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Range Description

Float1Name "" User attribute to query

Float1Default 0 Default value

Float2Name "" User attribute to query

Float2Default 0 Default value

Float3Name "" User attribute to query

Float3Default 0 Default value

Color1Name "" User attribute to query

Color1Default 0 Default value

Color2Name "" User attribute to query

Color2Default 0 Default value

Color3Name "" User attribute to query

Color3Default 0 Default value

Output only parameters

color OutputColor1 output color 1

color OutputColor2 output color 2

color OutputColor3 output color 3

float OutputFloat1 output float 1

float OutputFloat2 output float 2

float OutputFloat3 output float 3

10.4.6 genUV

generic shader that exports the standard u,v coordinates of a surface

Parameter Default Range Description

RepeatU 1 multiplier for U
value

RepeatV 1 multiplier for V
value

Description

The genUV shader exports the standard u, v coordinates assigned to an object.

Output only parameters



AIR User Manual109

© 2001-2014 SiTex Graphics, Inc.

float[2] OutUV u,v coordinates as an array of two floats

float OutUVCoverage fraction covered (always 1)

10.5 Imagers

Imager shaders modify the the final rendered image prior to output.  An imager shader is specified in a
RIB file with the Imager statement:

Imager "background" "color background" [1 1 1]

The current imager shader is an option (i.e., there is one imager shader or shader network for the
entire scene).  The Imager statement must appear before WorldBegin in the RIB stream.

In Air 11 and later, multiple imagers can be specified by pre-pending the shader name of the second
and later imagers with a "+".   Multiple imager shaders will be executed in the order in which they were
declared.



Shader Guide 110

© 2001-2014 SiTex Graphics, Inc.

background constant background color

LensFlareImager adds lens flares to the output image

Paper rough paper effect using a bump map

sRGB applies sRGB gamma correction

ToneMap tone-mapping for HDR images

VBackDrop texture-mapped background

VBgEnvironment environment-mapped background

VBgGradient 2-color vertical background gradient

VGreyscale convert output color to grey level

WatercolorPaper add watercolor paper effects

10.5.1 background

  sets the image background color

Parameter Default Value Range Description

background 0 0 0 background color for image

Description

The background imager shader simply sets the color of all unrendered pixels to the color of the



AIR User Manual111

© 2001-2014 SiTex Graphics, Inc.

background parameter.  The output alpha value is also set to 1.

Unlike all other shaders, the background shader is internal to AIR and cannot be modified.

10.5.2 LensFlareImager

imager shader that adds lens flare effects

Parameter Default Value Range Description

Intensity 1 overall intensity scale for flare effects

BloomIntensity 0.4 Intensity multiplier for bloom effect

BloomRadius 0.1 Nominal radius of bloom spot

BloomPoints 13 Number of points in bloom star

BloomFalloff 2 Intensity falloff with distance

BloomTint 1 1 1 Bloom color

StarIntensity 0.4 Intensity multiplier for star effect

StarRadius 0.3 Nominal star radius

StarPoints 50 Number of points in star

StarFalloff 3 Intensity falloff with distance

StarTint 1 1 1 Star color

RingIntensity 0.1 Intensity multiplier for rings

RingRadius 0.05 Nominal ring radius

RingWidth 0.07 Ring width

RingTint 1 .5 .5 Ring color

FilterWidth 2 Filter width multiplier for antialiasing

MinLightIntensity 0.01 Minimum light intensity

Apply_sRGB 0 0 or 1 if non-zero, apply sRGB gamma
correction

LightCategories "lensflare" Categories identifying lights that
contribute to lens flare

RandomSeed 137 Seed number for random effects

Description

The LensFlareImager shader adds lens flare effects to an image.  It is inspired by the lensflare shader
in the "Advanced RenderMan" book.  This version is an imager shader (not a surface shader) and
differs substantially from the original in many other ways.

The flare effect has three independent components:

Bloom - a glow effect representing the visible light source
Star - a star shape with thin points
Ring - a single ring around the light source

Each effect is exported in a corresponding output variable (__bloom, __star, and __ring) for use in
post-processing.

 The flare is generating by looping over the lights in the scene.  Only lights in the categories listed in the



Shader Guide 112

© 2001-2014 SiTex Graphics, Inc.

LightCategories parameter will be included.  By default LightCategories is set to "lensflare".
Use light categories to exclude particular lights from the lens flare effect (including those with no
physical location like the indirect light shader).

This effect works most reliably with point lights, since the illuminance() loop only returns lights that
illuminate the current shading location.  For spotlights, the camera location must be within the cone of
illumination to generate a lens flare.  For a spotlight or area light, you may wish to add an extra point
light (that does not illuminate objects in the scene) to generate the lens flare for the the light.

Output only variables

color __bloom Bloom color
color __star Star color
color __ring Ring color

10.5.3 Paper

  imager shader simulating the effect of drawing on rough paper

Parameter Default Value Range Description

PaperColor 0.8 0.7 0.6 paper color

BackgroundColor 1 1 1 color used for uncovered
pixels in the image

Bias 0.5 0-1 bias for bump effect

Start 0 0-1 start value for bump effect

End 1 0-1 end value for bump effect

BumpName "noise" bump map name or 'noise'
for builtin noise function

BumpSizeXY 1 1 bump map size

BumpInvert 0 0 or 1 when set 1, the bump map
value is inverted

Description

The paper imager produces an apperance of drawing or painting on a rough surface using a bump
map.  The paint (rendered image) sticks to the higher parts of the bump, and the paper is somewhat or
mostly visible in areas where the bump is lower.

10.5.4 sRGB

applies sRGB gamma correction to the output image

Parameter Default Value Range Description

ClampToAlpha 1 0 or 1 if 1, output r g b components are
clamped to the alpha value



AIR User Manual113

© 2001-2014 SiTex Graphics, Inc.

Description

The sRGB  imager shader applies sRGB gamma correction to the output r,g,b channels.  When
ClampToAlpha is 1, each component is clamped to the alpha value.

10.5.5 ToneMap

tone-mapping for high-dynamic range images

Parameter Default Value Range Description

MaxLuminance 11.5 luminance corresponding to
display value of 1

MiddleLuminance 0.18 luminance mapped to
display middle grey

MIddleGrey 0.18 display middle grey value

PremultipliedAlpha 1 0 or 1 when not 0, input color is
treated as pre-multiplied
alpha

Apply_sRGB 0 0 or 1 whether to apply sRGB
gamma correction to the
final color

ClampToAlpha 1 0 or 1 whether to clamp the final
r,g,b values to alpha

ModifyOutputColor 1 0 or 1 when zero, the imager
output color is not modified
(the tone map value is
available in the __tonemap
output variable)

Description

The ToneMap imager provides a simple tone-mapping operator for converting high-dynamic range
(HDR) images to low-dynamic range for display.

The conversion is based on the global operator described in "Photographic Tone Reproduction" by Erik
Reinhard et al.

The tone mapping operator is inspired by the zone system in photography.  First, the luminance is
scaled linearly to map the MiddleLuminance value to the MiddleGrey output value.  The dynamic range
is then compressed with

new = lum * (1 + lum/MaxLuminance^2) /( 1+lum)

MaxLuminance gives the luminance value corresponding to a display value of 1.  By lowering the
MaxLuminance value you can allow sections of an image to appear overexposed.

For speed this shader does not perform the rgb -> xyY -> rgb color space conversions described in the
paper.  Instead the r,g,b values are linearly scaled by the ratio of the output luminance from the tone
mapping operator and original luminance.  In some cases this shortcut can produce output values that
are still greater than 1.  If ClampToAlpha or Apply_sRGB is enabled, the final channel values will be
less than or equal to 1.

The same tone mapping operator is available as a display option in Air Show.



Shader Guide 114

© 2001-2014 SiTex Graphics, Inc.

Output only variables

color __tonemap Tone-mapped color

10.5.6 VBackDrop

  applies a texture map to the background

Parameter Default Value Range Description

Intensity 1 Texture result multiplier

TextureName "" Texture map for background

TextureBlur 0.0 Blur for texture lookup

RepeatX 1 Horizontal copies

RepeatY 1 Vertical copies

IsSequence 0 0 or 1 Is the map a sequence of frames?

FrameOffset 0 Offset added to current frame number
to obtain sequence number for texture
map

Description

The VBackDrop imager shader allows a texture map to be used as a background for the rendered
image.

When IsSequence is set to 1, the texture map name is assumed to be one frame in a numbered
sequence of images.  The image for the current frame is chosen replacing the last number in the
image name by the sum of the current frame number and the FrameOffset.

10.5.7 VBgEnvironment

  imager shader using an environment map for the background

Parameter Default Value Range Description

Intensity 1.0 Map result intensity multiplier

EnvironmentName "" Environment map for background

EnvironmentSpace "world" spaces Coordinate space for environment map
lookup

EnvironmentBlur 0.0 0.0-1.0 Environment map blur

Description

Use this imager shader to apply an environment map as the image background.



AIR User Manual115

© 2001-2014 SiTex Graphics, Inc.

10.5.8 VBgGradient

  2-color vertical gradient background

Parameter Default Value Range Description

TopColor 1 1 1 Color at top of image

BottomColor 0 0 0 Color at bottom of image

Sharpness 0.0 0.0-1.0 Sharpening factor for transition

MidPoint 0.5 0.0-1.0 Location of half-way point in transition
from top color to bottom color

Description

The VBgGradient imager shader provides a simple 2-color vertical background gradient.

10.5.9 VGreyscale

  converts output color to grey scale

Parameter Default Value Range Description

UseLuminance 1 whether to use luminance or HSV
value

Description

The VGreyscale imager shader converts the output rgb color to grey scale.  If UseLuminance is non-
zero, the grey level is based on the color's luminance; otherwise the grey level is taken from the HSV
value component.

10.5.10 WatercolorPaper

  imager for watercolor paper effects



Shader Guide 116

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Intensity 1.0 multiplier for texture effect

Texture "noise" texture file name or noise

TextureSizeXY 1 1 texture size scaling factors

Background 1 1 1 color to apply to non-
opaque parts of the image

BorderMin 0 0-0.5 minimum border width

BorderFuzz 0.1 0-1 blurriness of border
boundary

BorderVary 0.4 amplitude of border
variation

BorderRound 0.1 0-1 whether the visible region is
rectangular (0) or elliptical
(1) or some shape in
between

BorderColor .99 .98 .90 border color

BorderFrequency 33 frequency for border
variation

Apply_sRGB 0 0 or 1 whether to apply sRGB
gamma correction

ClampToAlpha 1 0 or 1 whether to clamp output
color to alpha

Seed 71 random number seed

Description

The WatercolorPaper imager shader adds two effects to make the image look more like a watercolor:
a rough paper effect, and a rough edge effect.

Rough Paper

The rough paper effect simulates the grainy appearance of some watercolor paper due to high
frequency variation in how the paint is absorbed.  The Texture parameter should point to a bump map
file or have the special value "noise" to use Air's builtin noise function.  The Intensity parameter can be
used to adjust the strength of this effect.

Rough Border

When the BorderMin parameter is greater than 0, the imager produces a rough edge around the
rendered image.  The general shape of the visible region can vary smoothly between a rectangle
(BorderRound=0) and an ellipse (BorderRound=1).  BorderVary and BorderFrequency control the
noise function used to produce the uneven boundary.

See Also

strokeWatercolorEdge stroke shader
VWatercolor surface shader



AIR User Manual117

© 2001-2014 SiTex Graphics, Inc.

10.6 Instancers

AIR 8 introduces a new instancer shader type for creating new geometry at render time based on
properties of an existing primitive.  As the name instancer implies, one motivation for the new shader
type is the common need to convert a set of particles into a set of instances of some other geometry
type.  Instancer shaders make particle instancing easy (see the VInstanceArchive shader for an
example).  Because an instancer can be applied to any primitive type, an instancer can also be used to
create primitives along a curve or "grow" primitives out of a surface.

An instancer shader is attached to a primitive just like a surface or displacement shader using the new
Instancer RIB call:

Instancer "VInstanceArchive" "string Archive" "teapot.rib"

As with true displacement, objects with an instancer shader must also give the renderer a bound on the
region within which new primitives will be created:

Attribute "instancerbound" "float sphere" [n]

The bound gives a distance used to expand the bounding box for the base primitive to encompass the
region occupied by any primitives created by the instancer.

Writing Instancers

AIR 8 introduces two new shading language features to enable the creation of instancer shaders:

The meshinfo() function allows an instancer shader to query properties of the base primitive.
The ribprintf() statement allows an instancer to send a stream of RIB commands to the
renderer to create new primitives.

The Vshade source code to all instancer shaders included with AIR can be found in
$AIRHOME/vshaders/Instancers

10.6.1 instCarpet

instancer shader for growing carpet fibers on a rectangular patch



Shader Guide 118

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Range Description

StrandCount 30 Strand count per unit length

StrandLength 0.2 Strand length

StrandWidthFraction 0.04 Strand width as a fraction of strand
length

StrandTaper 1 Multiplier for the width of the curve at the
curve tip.  Set to 0 to taper the curve to a
point.

StrandBaseVary 0.8 Variation in the base position of each
strand

PolarAngle 40 Base rotation about the vertical axis

PolarVary 180 Variation in polar angle

PolarFrequency 20 Frequency of polar variation relative to
the carpet rectangle

TiltMaxAngle 130 Maximum amount to bend or tilt the
fibers, as an angle between the fiber tip
and the vertical axis.

TiltPower 1 Exponent influencing the way fibers
bend

Stiffness 0.4 Measure of fiber material stiffness

StiffnessVary 0.2 Variation in stiffness over the carpet

StiffnessFrequency 133 How often the stiffness varies relative to
the carpet as a whole

StiffnessAtEdge 0.1 Stiffness near the edges of the carpet

EdgeWidth 3 Width of an edge region in strands

EdgeVary 0.5 Variation randomly added to the edge
distance for each strand

Color 1 .96 .9 Base fiber color

ColorVary 0 Color variation per strand

ColorMapName "" Optional color map

MaskName "" Optional mask used to cut a shape out
of the rectangle

MaskThreshold 0 Threshold for mask visibility

IndirectStrength 0.2 Diffuse reflectivity of strands for indirect
rays

IndirectVisibility 0 0 or 1 Whether the strands are visible to
indirect rays

IndirectSamples 0 If greater than 0, the number of rays to
trace to compute indirect illumination

CurveType "ribbon" polyline
ribbon
tube

Geometric representation of the strand
curves

ExportTextureCoordinat
es

1 0 or 1 Whether to export a texture coordinate
pair for each strand

Seed 913 Seed value for random variation



AIR User Manual119

© 2001-2014 SiTex Graphics, Inc.

The instCarpet instancer shader creates a carpet of fibers on a rectangular base polygon.

Carpet Shape

The carpet is modeled as a grid of carpet fibers.  The geometric model of the fibers can be tuned using
the following parameters:

StrandCount, StrandHeight, StrandWidthFraction, StrandTaper, StrandBaseVary

The overall density of the fibers is set with StrandCount, which gives the number of fibers per unit
length.  The diameter of a fiber is given by the StrandWidthFraction parameter as a fraction of the
fiber length.  The displacement bound for the base primitive should be set to the same value as
StrandLength.

By default the carpet curves have the same width from root to tip.  The fibers can be tapered by
lowering the StrandTaper parameter, which gives the width at the curve tip relative to the width at the
curve root.

StrandBaseVary varies the base position of each strand.

TiltMaxAngle, TiltPower, PolarAngle, PolarVary, PolarFrequency

TiltMaxAngle gives the maximum angle (in degrees) between the vertical direction and the tip of a
fiber.  TiltPower is an exponent applied to the tilt interpolation along the strand length.  The direction
of tilt can be changed using the StrandPolar parameters, which control a rotation in degrees about
the vertical axis.

Stiffness, StiffnessVary, StiffnessFrequency, StiffnessAtEdge

Stiffness controls how each fiber bends or tilts away from the vertical.  StiffnessVary and
StiffnessFrequency control the variation in stiffness across the carpet.  StiffnessAtEdge gives the
stiffness value near the edges of the carpet.

EdgeWidth, EdgeVary

EdgeWidth defines a region near each edge as a strand count.  If this value is greater than 0, the
shader automatically bends the strands close to an edge so they tilt perpendicular to the edge and
away from the carpet.  EdgeVary varies the calculated distance-edge value to prevent artifacts from
a regular pattern.

Color, ColorVary, ColorMapName

Color gives the base color for the carpet which can be randomly varied for each strand using
ColorVary.  If a ColorMapName is supplied, the color of each strand is taken from the color map,
indexed using the texture coordinates of the base polygon.  If the color varies per strand, the
instancer attaches a separate color value to each strand.

MaskName, MaskThreshold

MaskName is an optional mask texture map which can be used to "cut" irregular shapes out of the
base polygon.  MaskThreshold gives a minimum value used to determine where the mask is
opaque.

Carpet Shading

This instancer shader is designed to work with the companion VShadeCarpet surface shader, which



Shader Guide 120

© 2001-2014 SiTex Graphics, Inc.

should be assigned to the base polygon.

IndirectStrength, IndirectVisibility, IndirectSamples

By default the carpet fibers are not visible to indirect rays; set IndirectVisibility to 1 to enable visibility.
The instancer shader automatically sets the indirect shading mode to constant for the carpet fibers,
so if they are struck by an indirect ray, they simply return the fiber color multiplied by
IndirectStrength.  If IndirectSamples is greater than 0, it gives the number of rays to trace for indirect
lighting.  The instancer automatically sets the indirect:maxerror value to 0 to disable use of an
indirect or occlusion cache.

ExportTextureCoordinates

When ExportTextureCoordinates is set to 1, each fiber inherits the texture coordinates of its root
position on the base polygon.

See Also

VShadeCarpet surface shader
FakeCarpet surface shader

10.6.2 instMultipleArchives

particle instancer for multiple archives

Parameter Default Value Range Description

ArchiveName "" File name for one of the numbered archive files

ArchiveIndex 0 Index for archive file name

ArchiveIndexPrimVar "" If specified, a primitive variable holding an
index value for each vertex

Scale 1 Uniform scale applied to archive instances

ScaleByWidth 1 0 or 1 When non-zero, scale archive by point width

ApplyMotionBlur 0 0 or 1 When non-zero, apply translation motion blur

ApplyColor 0 0 or 1 When non-zero, apply vertex color to archive

XAngle 0 Rotation about X axis in degrees

XAnglePrimvar "" Primitive variable with rotation angle for X axis

YAngle 0 Rotation about Y axis in degrees

YAnglePrimVar "" Primitive variable with rotation angle for Y axis

ZAngle 0 Rotation about Z axis in degrees

ZAnglePrimVar "" Primitive variable with rotation angle for Z axis

PrimVarToAttribute1 "" prim var to convert to user attribute

PrimVarToAttribute2 "" prim var to convert to user attribute

PrimVarToAttribute3 "" prim var to convert to user attribute

PrimVarToAttribute4 "" prim var to convert to user attribute

PrimVarToAttribute5 "" prim var to convert to user attribute

PrimVarToAttribute6 "" prim var to convert to user attribute

Use the instMultipleArchives instancer to create instances of a numbered sequence of archive files



AIR User Manual121

© 2001-2014 SiTex Graphics, Inc.

based on a particle system.  The archives should be numbered sequentially, with no zero-padding.

The archive to use for each particle should be stored as a primitive variable, and that variable's name
provided in the ArchiveIndexPrimVar parameter.

The shader can also optionally convert other primitive variables to user attributes assigned to the
archives (where they can be queried by other shaders).  The prim vars can have either 1 value
(converted to a float user attribute) or 3 values (converted to a color user attribute).

See Also

VInstanceArchive instancer shader

10.6.3 MassiveAgents

adds Massive agents to a scene at render-time

Parameter Default Value Range Description

AgentArchivePrefix "" Prefix for per-frame agent rib archive generated
by Massive (the file name up until the trailing
frame number)

RenderPass "renderpass_
Air"

Name of the Massive render pass to use

MotionBlur 0 0 or 1 Set to 1 to enable motion blur

RotateX 0 Rotation angle in degrees about the X axis

Scale 1 Uniform scaling to apply to agents

FrameOffset 0 number added to the current scene frame
number to obtain the index number for the agent
archive

InheritTransform 1 When set to 1, the agents inherent the
transformation applied to the base primitive

Groups "agents" List of groups in which to include the agents

ProceduralCount 1 Number of instances of the Massive procedural
primitive to allow to run simultaneously

Procedural "run_program
.exe"

Name (optionally including full path) of the
Massive procedural primitive (RunProgram
version)

See Also:

Rendering Massive Agents in Rhino

10.6.4 VArrayOnCurve

creates an array of objects along a curve



Shader Guide 122

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Count 10 Number of instances along each curve

Start 0.2 0-1 Position of first instance along curve

End 0.9 0-1 Position of last instance along curve

Archive "" File name of RIB archive

Scale 1.0 Uniform scale applied to archive

Offset 0 0 0 Translation applied to archive

RotateXYZ 0 0 0 Rotation in degrees about X, Y, Z axes

TwistStart 0 Twist angle at start position

TwistEnd 360 Twist angle at end position

10.6.5 VArrayOnSurface

instancer shader creating a 2D array of objects on a surface

Parameter Default Value Range Description

CountX 10 Copies of archive in X direction

CountY 10 Copies of archive in Y direction

Archive "" RIB archive file name

Scale 1 Uniform scale applied to archive instances

ScaleVary 0 Per-item variation in scaling

JitterX 0 Variation in X position

JitterY 0 Variation in Y position

Offset 0 0 0 Translation applied to archive

RotateXYZ 0 0 0 X, Y, Z rotation in degrees for archive

RotateVary 0 0 0 Per-item variation in rotation angles

ColorMap "" Optional color map

Seed 593 Random seed for position variation

The VArrayOnSurface instancer creates instances of a RIB archive in a 2D array over a surface using
standard texture coordinates.

If no Archive name is supplied, the shader places a small sphere at each instance location.

10.6.6 VExtrude

instancer that extrudes curves or points along a straight line

Parameter Default Value Range Description

Distance 1 Distance to extrude

Direction 1 0 0 Extrusion direction



AIR User Manual123

© 2001-2014 SiTex Graphics, Inc.

10.6.7 VGrowFur

grows short fur on a surface

Parameter Default Value Range Description

Density 200 Max hairs per clump

Clumps 100 Clumps per surface

Width 0.01 Hair width

LengthMax 0.2 Max hair length

LengthMin 0.15 Min hair length

LengthMap "" Optional map for hair length

LengthVaryFreque
ncy

5 Frequency of length variation

TiltMin 0 -90 to 90 Min tilt angle in degrees

TiltMax 20 -90 to 90 Max tilt angle in degrees

TiltVaryFrequency 22 Frequency of tilt variation

Twist 360 Random twist angle per hair

FurColor .22 .15 .01 Base fur color

FurRootColor 0.5 0.5 0.5 Fur root color multiplier

FurTipColor 1 1 1 Fur tip color multiplier

FurColorMap "" Optional fur color map

FurDiffuse 0.7 0-1 Diffuse reflectance

FurDiffuse 0.3 0-1 Specular reflectance

Description

The VGrowFur instancer shader creates short fur on a surface.  The fur is positioned using standard
texture coordinates, so the underlying surface must have a well-defined set of standard texture
coordinates.

The fur is created as a set of clumps.  For each clump a single RIB Curves primitive is created with up
to Density individual hairs.  Each hair is represented as a simple linear line segment.  The shader
adjusts the number of hairs in a clump based on the area of the surface covered by the clump:  smaller
areas receive fewer hairs.

The shader assigns the VFur surface shader to the fur.  The FurRootColor, FurTipColor,
FurDiffuse, and FurSpecular values are passed to the corresponding VFur parameters.

10.6.8 VInstanceArchive

simple instancer creating copies of a RIB archive at particle locations



Shader Guide 124

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Archive "" RIB archive file name

ArchiveIsSimple 1 0 or 1 When non-zero, archive is retained as an inline
archive to accelerate instancing

Scale 1 Uniform scale applied to archive instances

MotionBlur 0 0 or 1 When non-zero, translation motion blur is
applied

ApplyWidth 1 0 or 1 When non-zero, scale archive by point width

ApplyColor 1 0 or 1 When non-zero, apply vertex color to archive

XAngle 0 Rotation about X axis in degrees

XAnglePrimVar "" Primitive variable to query for rotation angle

YAngle 0 Rotation about Y axis in degrees

YAnglePrimVar "" Primitive variable to query for rotation angle

ZAngle 0 Rotation about Z axis in degrees

ZAnglePrimVar "" Primitive variable to query for rotation angle

PrimVarToAttribute1 "" Primitive variable to convert to user attribute

PrimVarToAttribute2 "" Primitive variable to convert to user attribute

PrimVarToAttribute3 "" Primitive variable to convert to user attribute

PrimVarToAttribute4 "" Primitive variable to convert to user attribute

PrimVarToAttribute5 "" Primitive variable to convert to user attribute

PrimVarToAttribute6 "" Primitive variable to convert to user attribute

This simple shader creates a copy of the specifed RIB archive at every vertex position of the instancer
base primitive.

In common usage the base primitive will be a points primitive, in which case the point cluster attribute
can be used to force a large set of points to be subdivided into smaller sets before the instancer is
executed.  For example, tagging the base primitive with:

Attribute "point" "integer clustermax" [10]

would cause the instancer to be run on groups of at most 10 points.

The shader can optionally convert primitive variables to user attributes assigned to the archives (where
they can be queried by other shaders).  The prim vars can have either 1 value (converted to a float
user attribute) or 3 values (converted to a color user attribute).

See Also

instMultipleArchives instancer shader

10.6.9 VInstanceTree

companion instancer shader for the VTree procedure shader



AIR User Manual125

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

TreeArchive "" RIB archive file name with VTree definition

TreeScale 1 Uniform scale applied to archive instances

TreeSeed 124 Base tree seed for random numbers

TreeQuality 1 Tree quality override when not 1

TreeHeightOverrid
e

0 Tree height override if non-zero

TreeRotateX 0 Angle to rotate each tree about X axis

LeafColorOverride 0 0 or 1 Set to 1 to override average leaf color

LeafColor 0 .29 0 Average leaf color

LeafVaryHSL 0.1 0.1 0.1 Per-tree variation in average leaf color

The VInstanceTree instancer shader creates copies or instances of a VTree procedure shader
definition at vertex locations of the base primitive (usually a collection of points).  Each tree instance
receives a unique random seed based on the TreeSeed value and the vertex index, so every tree will
be unique.

Use TreeScale to adjust the size of tree instances to match the scale of your scene.  The tree
archives included with AIR are modeled in meters.  For a scene modeled in centimenters, the
appropriate TreeScale would be 100.

TreeHeightOverride can be used to set a specific tree height for an individual tree.  The height
should be in the same units as the tree archive.

The TreeRotateX parameter can be used to rotate a tree into the correct "up" position.  The tree
archives included with AIR assume the positive Y axis in world space is "up".

If the LeafColorOverride parameter is not 0, the average leaf color of each tree is taken from the
LeafColor value with per-tree variation in hue, saturation, and lightness based on LeafVaryHSL.
Note that the per-leaf color variation specified in the tree definition is still applied.

See Also:

VTree procedure shader

10.6.10 VShowBound

generates a wire frame bounding box for a primitive

Parameter Default Value Range Description

LineWidth 0.1 Line width for wire frame box

LineColor 1 1 1 Line color

Print 0 0 or 1 If 1, prints the bound for each object to stdout

10.7 Lights

Light shaders are used to illuminate a scene.

Regular Lights



Shader Guide 126

© 2001-2014 SiTex Graphics, Inc.

ambientlight emits constant illumination regardless of surface orientation

distantlight emits illumination in a single direction

pointlight emits light in all directions from a single source point

spherelight emits light like a spherical area light

spotlight emits light in a cone of directions

Area Lights

arealight shader for area lights using light supersampling

arealight2 shader for area lights using Air's fast areashadow() function

cardlight emulates adding a constant shaded card

portallight area light shader for windows, with environment map

sky_portallight area light shader for windows admitting sky light

texturedarealight area light with optional texture map

Lights with Texture Maps

distant_projector projects a texture using a distant light base

spot_projector projects a texture using a spotlight

uberlight multipurpose light with many controls

Lights for Windows

distant_window_light directional illumination through a paned window

spot_window_light spotlight shining through a paned window

sun_window_light sunlight shining through a paned window

Special Lights

photometric_pointlight point light source with IES support and physical illumination units

caustic caustics

envlight adds indirect illumination using ambient occlusion

indirect adds indirect diffuse illumination ("GI" or "global illumination")

sunlight sun light based on position, date/time & atmosphere

Lights for Baked Shadows and Illumination

Many light shaders have an extended version that allows shadows or illumination to be baked to 3D
texture maps and re-used.  The documentation for each light shader includes information on the
"bake" version when appropriate.

See Also

Lighting

10.7.1 ambientlight

RenderMan standard ambient light shader



AIR User Manual127

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

Description

The ambient light shader simply sets the emitted light value to the product of the intensity and
lightcolor parameters.

10.7.2 arealight, arealight_baked

area light shader for general area lights

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

maxemission 0 If greater than 0, the maximum emitted
light intensity (including falloff)

coneangle 1.57 0.0-1.5 Angle for emitted light range

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

shadowname "raytrace" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The arealight shader can be applied to any geometric primitive to turn it into an area light source.  The
quality of the illumination and shadows is controlled with the light's nsamples attribute:

Attribute "light" "integer nsamples" [n]

where n ranges between 1 and 256.  A large number of samples produces smoother results.

For area light primitives that are simple and convex, such as a single polygon or a disk, the arealight2
shader can produce similar results much more quickly.



Shader Guide 128

© 2001-2014 SiTex Graphics, Inc.

Light Intensity

The emitted light value is the product of the intensity and lightcolor parameters and an
attenuation factor determined by the falloff parameter.  The falloff parameter allows the light's
intensity to diminish with distance from the light.  A falloff value of 2 (which is physically accurate)
reduces the incident light value by the square of the distance from the light:

Cl = intensity * lightcolor / (Distance * Distance)

Although a falloff of 2 is physically correct, it can produce very large intensity values at locations close
to the light source.  The maxemission parameter can be used to set the maximum emitted intensity
regardless of distance from the light source.

Alternatively, a falloff value of 0 produces no attenuation with distance, which may be easier to control.

Shadows

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

Baked Shadows

AIR includes an extended version of the arealight shader - arealight_baked - with additional
parameters for creating 3D shadow textures and using 2D or 3D baked shadows:

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

motionbound 0 0 0 0 0 0 bounding box for moving objects

motionspace "world" space coordinate space of motionbound

See Baking Shadows and Illumination for more information.  Note that the arealight_baked shader
does not support the write or append bake modes.  The arealight_baked shader does support the read
mode for 3D shadow data baked with the arealight2_baked shader.

See Also



AIR User Manual129

© 2001-2014 SiTex Graphics, Inc.

area lights
arealight2 shader
Baking Shadows and Illumination

10.7.3 arealight2, arealight2_baked

fast area light shader using AIR's areashadow function

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

maxemission 0 If greater than 0, the maximum emitted
intensity, including falloff

samples 1 1-256 Samples for area light

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The arealight2 shader provides fast rendering for area lights with simple, convex geometry, such as a
single polygon or disk.  The quality of the area light illumination is determined by the shader samples
parameter.  The light's nsamples attribute should be set to 1 when the arealight2 shader is used.

Attribute "light" "integer nsamples" [1]

For complex area light geometry, use the arealight shader instead.

Light Intensity

The emitted light value is the product of the intensity and lightcolor parameters and an
attenuation factor determined by the falloff parameter.  The falloff parameter allows the light's
intensity to diminish with distance from the light.  A falloff value of 2 (which is physically accurate)
reduces the incident light value by the square of the distance from the light:

Cl = intensity * lightcolor / (Distance * Distance)



Shader Guide 130

© 2001-2014 SiTex Graphics, Inc.

Although a falloff of 2 is physically correct, it can produce very large intensity values at locations close
to the light source.  The maxemission parameter can be used to set the maximum emitted intensity
regardless of distance from the light source.

Alternatively, a falloff value of 0 produces no attenuation with distance, which may be easier to control.

Shadows

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

Baked Shadows

AIR includes an extended version of the arealight2 shader - arealight2_baked - with additional
parameters for creating 3D shadow textures and using 2D or 3D baked shadows:

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

motionbound 0 0 0 0 0 0 bounding box for moving objects

motionspace "world" space coordinate space of motionbound

See Baking Shadows and Illumination for more information.

See Also

area lights
arealight shader
Baking Shadows and Illumination

10.7.4 cardlight

area light shader that emulates adding a constant shaded card



AIR User Manual131

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

coneangle 1.57 0.0-1.5 Angle for emitted light range

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

shadowname "raytrace" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The cardlight shader emulates the effect of adding a constant shaded diffuse emitter to a scene.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

See Also

10.7.5 caustic, caustic_baked

light source returning caustics

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

__nonspecular 1 0, 1 If 1 light will not produce highlights

__foglight 0 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel index

Description

The caustic light shader returns any visible caustics at the current shading location.



Shader Guide 132

© 2001-2014 SiTex Graphics, Inc.

Baked Caustics

AIR includes an extended version of the caustic shader - caustic_baked - with additional parameters
for baking caustics to a 3D texture map and using a 2D or 3D texture for caustics.

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

motionbound 0 0 0 0 0 0 bounding box for moving objects

motionspace "world" space coordinate space of motionbound

See Baking Shadows and Illumination for more information.

See Also

Caustics
Baking Shadows and Illumination

10.7.6 distantlight, distantlight_baked

directional light shader

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

from 0 0 0 Source position of light

to 0 0 1 Target of light

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The distantlight shader emits light in a single direction defined by the vector to-from.  The incident
light at the point being shaded is simply the product of the intensity and lightcolor parameters.



AIR User Manual133

© 2001-2014 SiTex Graphics, Inc.

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.
The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

Baked Shadows

AIR includes an extended version of the distantlight shader - distantlight_baked - with additional
parameters for creating 3D shadow textures and using 2D or 3D baked shadows:

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

motionbound 0 0 0 0 0 0 bounding box for moving objects

motionspace "world" space coordinate space of motionbound

See Baking Shadows and Illumination for more information.

10.7.7 distant_projector

directional light shader that projects a texture map like a slide projector



Shader Guide 134

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

from 0 0 0 Source position of light

to 0 0 1 Target of light

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

texturename "" File name of texture map to project

textureblur 0.0 Blur for texture map

texturescale 1.0 Scale factor for texture

texturerotate 0 Rotation angle in degrees about the
cone axis

textureonce 0 0 or 1 When set to 1, only one copy of the
texture is displayed

textureup 0 1 0 Vertical axis used to orient the map
projection

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The distant_projector shader projects a texture map in the direction defined by the vector to-from.
The incident light at the point being shaded is the product of the intensity and lightcolor
parameters and the texture lookup result.

The texture map given by texturename parameter is mapped inside a square given by the texturescale
parameter.  The textureup parameter defines a vertical axis used to orient the map.  The texturerotate
parameter can be used to rotate the map.

By default only one copy of the map is displayed.  You can change that behavior by setting the
textureonce parameter to 0 and converting the texture map to an Air texture file using the Air texture
conversion tools mktex or mktexui, selecting the desired wrap mode in the process.

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.



AIR User Manual135

© 2001-2014 SiTex Graphics, Inc.

The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

10.7.8 distant_window_light

directional light shader that emits light only through a rectangular opening with optional panes and
texture map

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

from 0 0 0 Source position of light

to 0 0 1 Target of light

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name



Shader Guide 136

© 2001-2014 SiTex Graphics, Inc.

window_size_x 10 window width

window_size_y 10 window height

window_xdir 1 0 0 horizontal axis for the window

window_ydir 0 1 0 vertical axis for the window

window_panes_x 1 horizontal window pane count

window_panes_y 1 vertical window pane count

window_gap_x 0.1 horizontal gap between panes

window_gap_y 0.1 vertical gap between panes

window_fuzz_x 0.01 horizontal blur

window_fuzz_y 0.01 vertical blur

window_space "world" coordinate space for window directions

texture_name "" optional texture map

texture_blur 0 texture blur

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The distant_window_light shader emits light in a single direction defined by the vector to-from
through a rectangle defined by the window parameters.

The window opening is centered at the to location.  The window rectangle is defined by
window_size_x, window_xdir, window_size_y, and window_ydir.  The window may optionally
be subdivided into panes horizontally and/or vertically.  If a texture map is provided, it is assumed to
cover the entire window opening.

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.
The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows



AIR User Manual137

© 2001-2014 SiTex Graphics, Inc.

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

10.7.9 envlight, envlight_baked

environment light using ambient occlusion

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

sampleenvironmen
t

0 0 or 1 When enabled, the scene environment
is sampled for unoccluded rays and the
envmap value is ignored

samplelikediffuse 0 0 or 1 When enabled, the environment is
sampled using a lambert brdf,
producing a result more similar to
indirect diffuse lighting

envmap "" Optional environment map for
background

envspace "world" spaces Coordinate space for environment map

envsamples 64 Samples for environment map lookup

envblur 0.5 Blur for environment map lookup

mapname "raytrace" raytrace or name of occlusion map

mapblur 0.01 0.0-1.0 Blur for occlusion map

mapbias 0.01 Bias for occlusion map

maxsolidangle 0.05 Max solid angle in radians for grouping
of points in point-based occlusion

shadowcolor 0 0 0 Shadow color

shadowgroups "" Optional list of groups to query for
occlusion

__category "indirect" Light categories

__nonspecular 1 0, 1 If 1 light will not produce highlights

__foglight 0 0, 1 If 1 light illuminates volumes

__indirectlight 1 0, 1 Flag indicating indirect light status for
multipass rendering

__channel -1 0-9 Output channel



Shader Guide 138

© 2001-2014 SiTex Graphics, Inc.

Description

The envlight shader simulates light incident from a surrounding environment with ambient occlusion.
The incoming light can be a constant color or taken from an environment map specified with the
envmap parameter.

Shadows are simulated using AIR's occlusion() function.  When the mapname parameter is set to
"raytrace", ray tracing is used to compute the ambient occlusion at each point.  Otherwise, mapname is
treated as the file name for an occlusion map with occlusion information.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

Baked Shadows

AIR includes an extended version of the envlight shader - envlight_baked - with additional parameters
for creating 3D shadow textures and using 2D or 3D baked shadows:

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

See Baking Shadows and Illumination for more information.

See Also

Ambient occlusion

10.7.10 indirect, indirect_baked

light source emitting indirect diffuse illumination

Parameter Default Value Range Description

intensity 1.0 Light intensity

intensity_indirect 1.0 Light intensity for indirect rays

lightcolor 1 1 1 Light color

environmentmap "" Optional environment map for
background

environmentspace "world" spaces Coordinate space for environment map

__category "indirect" Light categories

__nonspecular 1 0, 1 If 1 light will not produce highlights

__foglight 0 0, 1 If 1 light illuminates volumes

__indirectlight 1 0, 1 Flag indicating indirect light status for
multipass rendering

__channel -1 0-9 Output channel

Description

The indirect light shader encapsulates AIR's indirect diffuse illumination capability (sometimes referred



AIR User Manual139

© 2001-2014 SiTex Graphics, Inc.

to as "global illumination").

The emitted light value is the indirect light incident at the current shading location scaled by the
intensity and lightcolor parameters, which can be used to "tweak" the indirect diffuse results.

The optional environmentmap parameter gives an environment map to query with indirect sample
rays that miss all objects in the scene.  A better way of setting the background environment map is with
the following option:

Option "indirect" "string envname" [""]

Baked Illumination

AIR includes an extended version of the indirect shader - indirect_baked - with additional parameters
for baking indirect illumination to a 3D texture map and using 2D or 3D texture maps with stored
indirect values.

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

See Baking Shadows and Illumination for more information.

See Also

Indirect diffuse illumination
envlight shader

10.7.11 indirectchannels

light shader for indirect diffuse illumination with light channel tracking

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

environmentmap "" Optional environment map for
background

environmentspace "world" spaces Coordinate space for environment map

__category "indirect" Light categories

__nonspecular 1 0, 1 If 1 light will not produce highlights

__foglight 0 0, 1 If 1 light illuminates volumes

__indirectlight 1 0, 1 Flag indicating indirect light status for
multipass rendering

__channel -1 0-9 Output channel

__bgchannel -1 0-9 Light channel for indirect bg value

Output only variables

color __background Background environment map contribution
color[10] __channels Per-light output channels



Shader Guide 140

© 2001-2014 SiTex Graphics, Inc.

Description

The indirectchannels light shader tracks light channels through indirect diffuse illumination bounces.
The resulting __channels output value is automatically picked up by the standard diffuse() function
and incorporated into its light channel output variables.

The __bgchannel parameter can be used to store the contribution of the background environment map
in an otherwise unused light channel so the bg contribution can also be traced through reflections.

See Also

indirect light shader
Light channels

10.7.12 massive_envlight

environment light using ambient occlusion without the occlusion cache, designed for use with Massive

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

samples 256 1-1024 Rays to cast to estimate occlusion

maxhitdist 500 Maximum distance to search for occluding
objects

adaptivesampling -1 -1, 0, or 1 Whether to use adaptive sampling (0=no,
1=yes, -1=inherit from adaptivesampling
attribute)

shadowbias 0.1 Offset to prevent incorrect self-shadowing

coneangle 1.57 Half angle in radians of the sample cone

envmap "" Optional environment map contributing
background illumination

envspace "world" spaces Coordinate space for environment map

envblur 0.5 Blur for environment map lookup

envsamples 64 Number of samples for map lookup

rotate_x 0 map rotation angle in degress about the x
axis

rotate_y 0 map rotation angle in degress about the y
axis

rotate_z 0 map rotation angle in degress about the z
axis

shadowcolor 0 0 0 Shadow color

__category "indirect" Light categories



AIR User Manual141

© 2001-2014 SiTex Graphics, Inc.

__nonspecular 1 0, 1 If 1 light will not produce highlights

__foglight 0 0, 1 If 1 light illuminates volumes

__indirectlight 1 0, 1 Flag indicating indirect light status for
multipass rendering

__channel -1 0-9 Output channel

Description

The massive_envlight shader simulates light incident from a surrounding environment with
ambient occlusion. The incoming light can be a constant color or taken from an environment map
specified with the envmap parameter.  This shader differs from the envlight shader in providing
additional parameters for explicitly specifying the number of occlusion samples and maximum hit
distance.

Shadows are computed by tracing rays at each point using AIR's occlusion() function.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

See Also

Ambient occlusion
envlight
Ambient occlusion in Massive

10.7.13 massive_indirect

light source emitting indirect diffuse illumination, with extra controls for use with Massive

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

samples 256 1-1024 Number of rays to trace for each
sample

maxhitdist 500 Max distance to search for nearby
surfaces

adaptivesampling -1 -1, 0 or 1 Whether to use adaptive sampling

environmentmap "" Optional environment map for
background

environmentspace "world" spaces Coordinate space for environment map

__category "indirect" Light categories

__nonspecular 1 0, 1 If 1 light will not produce highlights

__foglight 0 0, 1 If 1 light illuminates volumes

__indirectlight 1 0, 1 Flag indicating indirect light status for
multipass rendering

__channel -1 0-9 Output channel

Description



Shader Guide 142

© 2001-2014 SiTex Graphics, Inc.

The massive_indirect light shader encapsulates Air's indirect diffuse illumination capability (sometimes
referred to as "global illumination").

The emitted light value is the indirect light incident at the current shading location scaled by the
intensity and lightcolor parameters, which can be used to "tweak" the indirect diffuse results.

This light shader is designed for computing indirect illumination results without using an irradiance
cache.  The samples, maxhitdist, and adaptivesampling parameters provide basic controls over GI
quality.

Massive users will also need to assign a custom options rib to the scene with the following attribute to
enable object visibility to indirect rays:

Attribute "visibility" "indirect" 1

Users may also wish to set the number of indirect bounces with:

Option "indirect" "maxbounce" [n]

By default only 1 bounce of indirect illumination is computed.

See Also

massive_envlight light shader
indirect light shader
Indirect Lighting

10.7.14 photometric_pointlight

point light source with support for IES light profiles and physically-based illumination values



AIR User Manual143

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

intensityunit "none" none,candela,lum
en,watt

Units for light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Spectral power distribution for light
color

from 0 0 0 Source position of light

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

sceneunitsize 1 Size of one unit in world space

illuminanceunity 500 Divisor for emitted light intensity

lumensperwatt 17 Lumens per watt for watt intensity unit

iesname "" file name for IES light profile

iesspace "shader" spaces coordinate space for IES profile
environment map lookup

iesrotatex 0 ies rotation about X axis in degrees

iesrotatey 0 ies rotation about Y axis in degrees

iesrotatez 0 ies rotation about Z axis in degrees

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The photometric_pointlight shader is a point light source with support for physically-based illumination
values.  A description of the physically-based parameters can be found in the section
Photometric Lights and IES Profiles.  The shadow controls in the shader behave exactly like those in
the standard pointlight shader.

10.7.15 pointlight, pointlight_baked

point light source shader



Shader Guide 144

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

maxemission 0 If greater than 0, the maximum emitted
intensity (including falloff)

from 0 0 0 Source position of light

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__category "lensflare" Light category

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The pointlight shader emits light in all directions from the source point from.

Light Intensity

The emitted light value is the product of the intensity and lightcolor parameters and an
attenuation factor determined by the falloff parameter.  The falloff parameter allows the light's
intensity to diminish with distance from the light.  A falloff value of 2 (which is physically accurate)
reduces the incident light value by the square of the distance from the light:

Cl = intensity * lightcolor / (Distance * Distance)

Although a falloff of 2 is physically correct, it can produce very large intensity values at locations close
to the light source.  The maxemission parameter can be used to set the maximum emitted intensity
regardless of distance from the light source.

Alternatively, a falloff value of 0 produces no attenuation with distance, which may be easier to control.

Traced Shadows



AIR User Manual145

© 2001-2014 SiTex Graphics, Inc.

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.
The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

Baked Shadows

AIR includes an extended version of the pointlight shader - pointlight_baked - with additional
parameters for creating 3D shadow textures and using 2D or 3D baked shadows:

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

motionbound 0 0 0 0 0 0 bounding box for moving objects

motionspace "world" space coordinate space of motionbound

See Baking Shadows and Illumination for more information.

10.7.16 portallight

shader for area lights representing windows or other openings



Shader Guide 146

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

maxemission 0 When greater than 0, max emitted
intensity

falloff 2 Exponent for attenuation with distance

environmentmap "" Optional environment map for
background

environmentspace "world" spaces Coordinate space for environment map

environmentblur 0.5 Blur for environment map lookup

environmentsampl
es

16 Samples for environment map lookup

shadowname "raytrace" raytrace for traced shadows or "" for no
shadows

shadowbias 0.01 Offset for traced rays

shadowcolor 0 0 0 Shadow color

shadowgroups "" Shadow-casting groups

__category "indirect" Light categories

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 0 0, 1 If 1 light illuminates volumes

__nondiffuse 0 0, 1 If 1 light contributes diffuse illumination

__channel -1 0-9 Output channel index

Description

Use the portallight shader for area lights representing a window or other opening admitting illumination
from an external source captured in an environment map.  For interior scenes using an area light with
this shader can be more efficient than trying to capture the effects of an external environment with
indirect diffuse illumination.

The quality of the illumination and shadows is controlled with the light's nsamples attribute:

Attribute "light" "integer nsamples" [n]

A large number of samples produces smoother results.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

See Also

area lights
arealight shader



AIR User Manual147

© 2001-2014 SiTex Graphics, Inc.

10.7.17 sky_portallight

area light shader for a portal admitting sky light



Shader Guide 148

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

maxemission 0 When greater than 0, the maximum
emitted intensity

falloff 2 exponent for intensity falloff with
distance

turbidity 5 2-9 atmospheric turbidity (integer 2-9)

date_month 4 1-12 date month

date_day 15 1-31 day of month

date_hour 12 0-24 time of day (24-hour clock)

latitude_longitude 47.45 -122.3 observer location

time_zone -8 difference between local time and
GMT

animate_hour 0 When non-zero, the end time for
animation

animate_time_scale 1 Multiplier for the global time value

override_zenith -1 When positive, sets sun zenith position

override_azimuth 0 Override for sun azimuth position

ground_diffuse 0.4 Ground diffuse reflectance

ground_reflection 0.0 Ground reflections

ground_color 0.95 1 0.8 Ground color

ground_blend_angle 15 Angle in degress over which sky and
ground transition at the horizon

ground_self_illum 0 Ground self-illumination

coord_sys_y_is_up 1 0 or 1 when 1, Y is up; otherwise Z is up

coord_sys_north_angle 0 North direction as an angle in degrees
relative to the X axis

coord_sys_right_handed 1 0 or 1 Set to 1 for a right-handed coordinate
system

divisor 10000 Global divisor for computed intensity

divide_by_average 1 0 or 1 When set to 1, the computed intensity
at the current location is divided by the
average color of the entire sky

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows



AIR User Manual149

© 2001-2014 SiTex Graphics, Inc.

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

This area light shader combines the portallight shader with the envPhysicalSky environment shader for
more efficient rendering.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

See Also

area lights
arealight shader
portallight light shader
envPhysicalSky environment shader

10.7.18 spherelight

light shader to make a point light behave like a spherical area light

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

lightradius 1.0 Radius of the virtual sphere

from 0 0 0 Source position of light

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 4 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows



Shader Guide 150

© 2001-2014 SiTex Graphics, Inc.

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__category "" Light category

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

A spherical light source can provide more realistic illumination than a traditional point light because it
gives the light an actual size and shape.  The usual way to render a sphere light is to use an arealight
shader with sphere geometry.  That approach works, but it has some drawbacks:

· Render time can be significantly slower because the area light shader must be evaluated at many
different locations on the sphere to produce a smooth result.

· Some software (such as Massive) does not provide an interface for area lights.

To address those drawbacks, we've put together a spherelight light shader that can be used to
simulate the effect of a spherical light source using a standard point-type light.  The shader is similar to
the pointlight shader with the addition of a lightradius parameter for the radius of the (virtual)
spherical light source.  The shader uses the light radius in a couple computations that approximate the
effects of a spherical source:

· Shadows are blurry close to the source and sharper farther away.  The shader simulates this effect
by computing a shadow blur angle based on the distance to the light source and the light radius:

lenL=max(sqrt(L.L),radius);
blur = abs(atan(radius,sqrt(lenL*lenL-radius*radius)));

· For locations close to the sphere surface, the light source no longer behaves as an idealized point
light.  The shader accounts for this by supersampling the sphere surface to account for the variation
in incoming illumination from different parts of the sphere surface.

The images below compare the results for a true spherical area light (top)  with 64 light samples and
the spherelight shader (bottom) using 64 shadow rays:



AIR User Manual151

© 2001-2014 SiTex Graphics, Inc.



Shader Guide 152

© 2001-2014 SiTex Graphics, Inc.

Light Intensity

The emitted light value is the product of the intensity and lightcolor parameters and an
attenuation factor determined by the falloff parameter.  The falloff parameter allows the light's
intensity to diminish with distance from the light.  A falloff value of 2 (which is physically accurate)
reduces the incident light value by the square of the distance from the light:

Cl = intensity * lightcolor / (Distance * Distance)

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.
The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

10.7.19 spotlight, spotlight_baked

spotlight shader



AIR User Manual153

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

maxemission 0 If greater than 0, the maximum emitted
light intensity

from 0 0 0 Source position of light

to 0 0 1 Target of light

coneangle 0.52 0.0-1.5 Cone angle

conedeltaangle 0.087 0.0-1.5 Angle for cone edge blur

beamdistribution 2 0-2 Exponent for cross-beam falloff

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__category "lensflare" Light categories

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The spotlight shader emits a cone of light with apex at the source point from and direction given by the
vector to-from.  The coneangle parameter gives the half-angle of the cone in radians.

Light Intensity

The emitted light value is the product of the intensity and lightcolor parameters and an
attenuation factor determined by the falloff parameter.  The falloff parameter allows the light's
intensity to diminish with distance from the light.  A falloff value of 2 (which is physically accurate)
reduces the incident light value by the square of the distance from the light:

Cl = intensity * lightcolor / (Distance * Distance)

Although a falloff of 2 is physically correct, it can produce very large intensity values at locations close
to the light source.  The maxemission parameter can be used to set the maximum emitted intensity



Shader Guide 154

© 2001-2014 SiTex Graphics, Inc.

regardless of distance from the light source.

Alternatively, a falloff value of 0 produces no attenuation with distance, which may be easier to control.

The emitted light also varies based on the angle between the shading location and the cone axis.  The
beamdistribution parameter gives an exponent that is applied to the cosine of the angle.  The light
intensity smoothly fades to 0 as the angle ranges from coneangle-conedeltaangle to
coneangle.

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.
The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

Baked Shadows

AIR includes an extended version of the spotlight shader - spotlight_baked - with additional parameters
for creating 3D shadow textures and using 2D or 3D baked shadows:



AIR User Manual155

© 2001-2014 SiTex Graphics, Inc.

bakemap "" Bake map file name

bakemode "" Bake mode

bakemapblur 0 Blur for bake map query

bakemapfilterwidth 1 Filter width for bake map query

motionbound 0 0 0 0 0 0 bounding box for moving objects

motionspace "world" space coordinate space of motionbound

See Baking Shadows and Illumination for more information.

10.7.20 spot_projector

spotlight shader that projects a texture map like a slide projector

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

maxemission 0 If greater than 0, the maximum emitted
light intensity

from 0 0 0 Source position of light

to 0 0 1 Target of light

coneangle 0.52 0.0-1.5 Cone angle

conedeltaangle 0 0.0-1.5 Angle for cone edge blur

beamdistribution 0 0-2 Exponent for cross-beam falloff

falloff 0 0, 1, 2 Exponent for falloff in light intensity with
distance

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__category "lensflare" Light categories



Shader Guide 156

© 2001-2014 SiTex Graphics, Inc.

texturename "" File name of texture map to project

textureblur 0.0 Blur for texture map

texturescale 1.0 Scale factor for texture

texturerotate 0 Rotation angle in degrees about the
cone axis

textureonce 1 0 or 1 When set to 1, only one copy of the
texture is displayed

textureup 0 1 0 Vertical axis used to orient the map
projection

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The spot_projector shader allows a basic spotlight to be used to project a texture map as a light source
like a slide projector.  Like the spotlight shader, the spot_projector shader emits a cone of light with
apex at the source point from and direction given by the vector to-from.  The coneangle
parameter gives the half-angle of the cone in radians.

The texture map given by texturename parameter is mapped to the inside of the spotlight cone.  The
textureup parameter defines a vertical axis used to orient the map.  The texture scale parameter can
be used to resize the map, and the texturerotate parameter to rotate the map.

By default only one copy of the map is displayed.  You can change that behavior by setting the
textureonce parameter to 0 and converting the texture map to an Air texture file using the Air texture
conversion tools mktex or mktexui, selecting the desired wrap mode in the process.

Light Intensity

The emitted light value is the product of the intensity and lightcolor parameters and an
attenuation factor determined by the falloff parameter.  The falloff parameter allows the light's
intensity to diminish with distance from the light.  A falloff value of 2 (which is physically accurate)
reduces the incident light value by the square of the distance from the light:

Cl = intensity * lightcolor / (Distance * Distance)

Although a falloff of 2 is physically correct, it can produce very large intensity values at locations close
to the light source.  The maxemission parameter can be used to set the maximum emitted intensity
regardless of distance from the light source.

Alternatively, a falloff value of 0 produces no attenuation with distance, which may be easier to control.

The emitted light also varies based on the angle between the shading location and the cone axis.  The
beamdistribution parameter gives an exponent that is applied to the cosine of the angle.  The light
intensity smoothly fades to 0 as the angle ranges from coneangle-conedeltaangle to
coneangle.

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.



AIR User Manual157

© 2001-2014 SiTex Graphics, Inc.

The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

10.7.21 spot_window_light

spot_window_light shader for shining light through a paned window

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

maxemission 0 If greater than 0, the maximum emitted
light intensity

from 0 0 0 Source position of light

to 0 0 1 Target of light

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.0 0.0-0.5 Blur for shadows

shadowsamples 4 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows



Shader Guide 158

© 2001-2014 SiTex Graphics, Inc.

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__category "" Light categories

window_size_x 10 window width

window_size_y 10 window height

window_xdir 1 0 0 horizontal axis for the window

window_ydir 0 1 0 vertical axis for the window

window_panes_x 1 horizontal window pane count

window_panes_y 1 vertical window pane count

window_gap_x 0.1 horizontal gap between panes

window_gap_y 0.1 vertical gap between panes

window_fuzz_x 0.01 horizontal blur

window_fuzz_y 0.01 vertical blur

window_space "world" coordinate space for window directions

texture_name "" optional texture map

texture_blur 0 texture blur

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The spot_window_light shader emits light through a virtual paned window defined by the window_*
parameters.  This meant as an efficient way to simulate an external light source such as the sun
shining into a room.

The window opening is centered at the to location.  The window rectangle is defined by
window_size_x, window_xdir, window_size_y, and window_ydir.  The window may optionally
be subdivided into panes horizontally and/or vertically.  If a texture map is provided, it is assumed to
cover the entire window opening.

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.
The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]



AIR User Manual159

© 2001-2014 SiTex Graphics, Inc.

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

10.7.22 sun_window_light

light shader for sun shining through a window



Shader Guide 160

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

use_sun_color 1 0 or 1 whether to use the computed sun color

turbidity 5 2-9 atmospheric turbidity (integer 2-9)

date_month 4 1-12 date month

date_day 15 1-31 day of month

date_hour 12 0-24 time of day (24-hour clock)

latitude_longitude 47.45 -122.3 observer location

time_zone -8 difference between local time and
GMT

animate_hour 0 When non-zero, the end time for
animation

animate_time_scale 1 Multiplier for the global time value

override_zenith -1 When positive, sets sun zenith position

override_azimuth 0 Override for sun azimuth position

coord_sys_y_is_up 1 0 or 1 when 1, Y is up; otherwise Z is up

coord_sys_north_angle 0 North direction as an angle in degrees
relative to the X axis

coord_sys_right_handed 1 0 or 1 Set to 1 for a right-handed coordinate
system

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name



AIR User Manual161

© 2001-2014 SiTex Graphics, Inc.

window_size_x 10 window width

window_size_y 10 window height

window_center 0 0 0 center of window

window_xdir 1 0 0 horizontal axis for the window

window_ydir 0 1 0 vertical axis for the window

window_panes_x 1 horizontal window pane count

window_panes_y 1 vertical window pane count

window_gap_x 0.1 horizontal gap between panes

window_gap_y 0.1 vertical gap between panes

window_fuzz_x 0.01 horizontal blur

window_fuzz_y 0.01 vertical blur

window_space "world" coordinate space for window directions

texture_name "" optional texture map

texture_blur 0 texture blur

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The sun_window_light shader computes the position and color for a sun-like light source based on the
observer's position, the local data & time, and the atmospheric turbidity.

The turbidity parameter sets the relative portion of atmospheric scattering due to haze instead of
molecules.  Larger values model atmospheres with more large (dust) particles.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

See Also

envPhysicalSky environment shader

10.7.23 sunlight

sun color and position based on observer location, date/time, and atmospheric conditions



Shader Guide 162

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

use_sun_color 1 0 or 1 whether to use the computed sun color

turbidity 5 2-9 atmospheric turbidity (integer 2-9)

date_month 4 1-12 date month

date_day 15 1-31 day of month

date_hour 12 0-24 time of day (24-hour clock)

latitude_longitude 47.45 -122.3 observer location

time_zone -8 difference between local time and
GMT

animate_hour 0 When non-zero, the end time for
animation

animate_time_scale 1 Multiplier for the global time value

override_zenith -1 When positive, sets sun zenith position

override_azimuth 0 Override for sun azimuth position

coord_sys_y_is_up 1 0 or 1 when 1, Y is up; otherwise Z is up

coord_sys_north_angle 0 North direction as an angle in degrees
relative to the X axis

coord_sys_right_handed 1 0 or 1 Set to 1 for a right-handed coordinate
system

shadowname "" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowblur 0.01 0.0-0.5 Blur for shadows

shadowsamples 1 1-256 Number of rays for traced shadows

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The sunlight shader computes the position and color for a sun-like light source based on the observer's
position, the local data & time, and the atmospheric turbidity.

The turbidity parameter sets the relative portion of atmospheric scattering due to haze instead of
molecules.  Larger values model atmospheres with more large (dust) particles.



AIR User Manual163

© 2001-2014 SiTex Graphics, Inc.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

See Also

envPhysicalSky environment shader

10.7.24 texturedarealight

area light shader with texture map control over emitted light

Parameter Default Value Range Description

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

lightcolor_spd "" Light color spectrum file

maxemission 0 If greater than 0, the maximum emitted
intensity (including falloff)

coneangle 1.57 0.0-1.5 Angle for emitted light range

falloff 2 0, 1, 2 Exponent for falloff in light intensity with
distance

texturename "" Texture map file name

sizexy 1 1 Texture map size

originxy 0 0 Texture map origin

shadowname "raytrace" Name of shadow map or raytrace
for traced shadows

shadowbias 0.01 Offset to prevent incorrect self-
shadowing

shadowcolor 0 0 0 Color of shadows

shadowgroups "" Optional groups for ray-traced
shadows

shadowattribute "user:shadowgroups
"

Per-object shadowgroups override
attribute name

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

__nonspecular 0 0, 1 If 1 light will not produce highlights

__foglight 1 0, 1 If 1 light illuminates volumes

__channel -1 0-9 Output channel

Description

The texturedarealight shader allows the emitted illumination from an area light to be controlled with a
texture map.  The quality of the illumination and shadows is controlled with the light's nsamples
attribute:

Attribute "light" "integer nsamples" [n]



Shader Guide 164

© 2001-2014 SiTex Graphics, Inc.

A large number of samples produces smoother results.  When tweaking the number of samples, it
usually makes sense to increase or decrease the amount by a factor of 2.

Light Intensity

The emitted light value is the product of the intensity and lightcolor parameters and an
attenuation factor determined by the falloff parameter.  The falloff parameter allows the light's
intensity to diminish with distance from the light.  A falloff value of 2 (which is physically accurate)
reduces the incident light value by the square of the distance from the light:

Cl = intensity * lightcolor / (Distance * Distance)

Although a falloff of 2 is physically correct, it can produce very large intensity values at locations close
to the light source.  The maxemission parameter can be used to set the maximum emitted intensity
regardless of distance from the light source.

Alternatively, a falloff value of 0 produces no attenuation with distance, which may be easier to control.

Shadows

The shadowgroups parameter can be used to restrict shadow-casting to the specified list of groups.
The shadow group can be overridden on a per-object basis by providing a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The shadowattribute parameter gives the name of the user attribute to check for a custom shadow
casting-group.  By default all lights look for a custom shadow set in the same user attribute.  By
providing a different user attribute for each light, one can precisely specify for each object and each
light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

See Also

area lights
arealight shader
arealight2 shader

10.7.25 uberlight

multipurpose light shader



AIR User Manual165

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

lighttype "spot" "spot"
"omni"

"arealight"

Light type

intensity 1.0 Light intensity

lightcolor 1 1 1 Light color

cuton 0.01 Min depth value that is illuminated

cutoff 1000000 Max depth value illuminated

nearedge 0.0 Transition region at near end of depth range

faredge 0.0 Transition region at far end of depth range

falloff 0 Exponent for falloff with distance

falloffdistance 1.0 Distance at which falloff begins

maxintensity 1.0 Maximum intensity

parallelrays 0 When 0 rays emanate from a single point; when
1 rays are parallel

shearx 0.0

sheary 0.0 Shear applied to light cone

width 1.0 Width of the light opening at z=1

height 1.0 Height of the light opening at z=1

wedge 0.1 Width edge fuzz

hedge 0.1 Height edge fuzz

roundness 1.0 0.0-1.0 Shape of the light cross-section:  0=rectangle,
1=perfect ellipse

beamdistributio
n

0.0 Controls falloff in intensity with angle for a spot
light

slidename "" Texture map for filtering the light

noiseamp 0.0 Amplitude for noise applied to the light

noisefreq 4 Frequency for noise

noiseoffset 0 0 0 Offset for noise (useful for animation)



Shader Guide 166

© 2001-2014 SiTex Graphics, Inc.

shadowname "" Shadow map name or raytrace for traced
shadows

shadowblur 0.01 0.0-1.0 Blur for shadow map

shadowbias 0.01 Bias for shadow map

shadowsamples 1 1-256 Rays for traced shadows

shadowcolor 0 0 0 Color for shadows

blockercoords "" Coordinate system for blocker

blockerwidth 1.0

blockerheight 1.0 Width and height of blocker (in x and y of
blockercoords)

blockerwedge 0.1 Blocker width edge fuzz

blockerhedge 0.1 Blocker height edge fuzz

blockerround 1.0 0.0-1.0 Roundedness of blocker

__nondiffuse 0 0, 1 If 1 light is excluded from diffuse light

nonspecular 0 0, 1 Set to 1 to exclude from specular calculations

__foglight 1 0, 1 If 1 illuminates volumes

__channel -1 0-9 Output channel

Description

The uberlight shader is a multipurpose light shader with many parameters.  The uberlight shader
included with AIR is a slightly modified version of the shader discussed by Ronen Barzel in chapter 14
of Advanced RenderMan : Creating CGI for Motion Pictures by Apodaca and Gritz.

Light Type

The lighttype parameter determines how the shader casts light:

spot casts light towards the positive z axis
omni casts light in all directions
arealight casts light within a hemisphere on the front side of the light surface

Distance Shaping and Falloff

The cuton and cutoff parameters define the range of depths that are illuminated.  Emitted intensity
will be zero outside that range.  nearedge and faredge give transition zones at either end of the
range in which intensity smoothly diminishes to 0.

falloff is the exponent for decay with distance.  A value of 0 produces no falloff; a value of 2
produces the square-law falloff.  The falloffdistance parameter gives the distance at which
falloff-with-distance begins.  No distance-based attenuation occurs at locations closer than
falloffdistance.

maxintensity sets the maximum intensity, preventing the emitted intensity from growing too large.

When the parallelrays parameter is 0, light rays diverge; when the parameter is 1 light rays remain
parallel.

Cross-section Shaping

Uberlight casts light with a cross-sectional shape that can vary from a rectangle to a perfect ellipse.



AIR User Manual167

© 2001-2014 SiTex Graphics, Inc.

width and height give the width and height of the light opening.  roundness determines whether
the shape is a rectangle (0) or ellipse (1) or a super-ellipse somewhere in between.  wedge and hedge
define a fuzzy region along the edges of the light.

shearx and sheary can be used to shear the light cone.

beamdistribution controls the falloff  in intensity with angle from the central axis.  A value of 0
results in constant intensity across the light.  A value of 1 is physically correct for a spotlight.  A value of
2 matches the default behavior the spotlight shader.

Cookie or Slide

The light can optionally project a texture map like a slide if a slidename is provided.

Fake Blocker Shadows

The blocker parameters can be used to define a superellipse that casts fake shadows.
blockercoords gives a coordinate space for the blocker (which should be defined in the scene file
using CoordinateSystem.)  Blockerwidth and blockerheight give the dimensions of the
blocker which is defined to lie on the x-y plane of the blocker coordinate system.  Blockerwedge,
blockerhedge, and blockerround define the shape of the superellipse in the same manner as the
corresponding parameters for the light shape.

Traced Shadows

If the shadowname parameter is set to the special value "raytrace", shadows are generated by
tracing shadow rays.  The shadowsamples parameter specifies the number of shadow rays to trace.
The shadowblur parameter gives an angle (in radians) to distribute the rays around the point being
shaded.  Adjust the shadowbias parameter to prevent incorrect self-shadowing.

Shadow-mapped Shadows

Assign the file name of a previously generated shadow map to the shadowname parameter to
generate shadow-mapped shadows.  The shadowblur parameter gives a blur value as a fraction of
the shadow map size.  AIR ignores the shadowsamples parameter for shadow-mapped shadows, but
other renderers may use it to control the quality of mapped shadows.  Adjust the shadowbias
parameter to prevent incorrect self-shadowing.

Output only variables

color __shadow Shadow value
color __unshadowed_Cl Emitted illumination without shadows

Credits

Original shader coded by Larry Gritz based on Ronen Barzel's paper "Lighting Controls for Computer
Cinematography" (in Journal of Graphics Tools, vol. 2, no. 1: 1-20).

10.8 Procedures

AIR 8 introduces a new procedure shader type for generating new primitives on-demand at render
time.

An instance of a procedure shader is created with the new RIB Procedure call:



Shader Guide 168

© 2001-2014 SiTex Graphics, Inc.

Procedure "shadername" [minx maxx miny maxy minz maxz] parameter list

The array of 6 floats after the shader name gives a bounding box in object space encompassing all
objects that will be created by the procedure shader.  If and when AIR encounters the bounding box
during rendering, the procedure shader will be executed, and the resulting objects inserted into the
scene.

Writing Procedure Shaders

A procedure shader creates new geometry by emitting RIB commands using the new ribprintf()
shading language command.

Source code for the procedure shaders included with AIR can be found in
$AIRHOME/vshaders/Procedures

10.8.1 V3DArray

  creates a 3D rectilinear array of archive instances

Parameter Default Value Range Description

Archive "" RIB archive file name

Scale 1 Uniform scale applied to archive instances

CountXYZ 4 4 4 Array size in each dimension

OffsetX 1 0 0 Translation per increment in X index

OffsetY 0 1 0 Translation per increment in Y index

OffsetZ 0 0 1 Translation per increment in Z index

Origin 0 0 0 Offset for entire array

10.8.2 VTree

 procedural tree generator

Introduction

The VTree procedure shader "grows" a tree at render time.  Many variations of the same basic tree
"look" can be generated simply by changing the Seed value used to for generating random numbers
during construction of the tree.

The tree model has four components:  a trunk, major branches emanating from the trunk, twigs
growing out of the branches, and leaves attached to the twigs.

Tree Shape and Size



AIR User Manual169

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

TreeShape 0 0-7 Index into tree shape table (see below)

TreeUpAttraction 0.5 Tendency of twigs and leaves to point up or
down

TreeScale 1 Uniform scale applied to tree

TreeRotate 0 0-360 Rotation in degrees about vertical axis

TreeOffset 0 0 0 Center of trunk base

TreeUp 0 1 0 Up direction for tree

Seed 123 integer Seed value for random variation

The overall shape of the tree is determined by the TreeShape parameter, which selects from among
the following 8 basic tree shapes:

0 cone 1 sphere 2 hemisphere 3 cylinder

4 tapered
cylinder

5 flame 6 inverse
cone

7 tend
flame

There overall size of the tree is determined by the trunk height, given as an average TrunkHeight
and an allowed variation TrunkHeightVary.  The actual height is chosen within that range based on
the random Seed value.  Other size parameters for the trunk, branches, and twigs are given relative to
the trunk height.  The only other absolute size parameter is the LeafSize value.

Trunk

Parameter Default Value Range Description

TrunkHeight 4 Average trunk height

TrunkHeightVary 0.5 Allowed variation in trunk height

TrunkWidthRatio 0.04 Ratio of trunk width at base to trunk height

TrunkWobble 0.1 Random variation in trunk orientation

TrunkBend 0 0 angle range for bent trunk (in degrees)

TrunkSurface "VRubber" surface shader for trunk

TrunkColor .5 .5 .5 base surface color for trunk

TrunkColorMap "" optional color map for trunk

TrunkBumpMap "" optional bump map for trunk

TrunkBump 0.1 bump amplitude

TrunkTextureSize  1 1 texture map scale

TrunkCurveType "tube" trunk curve type

The trunk width at the base of the tree is computed by multiplying the trunk height by
TrunkWidthRatio.  Trunk width at the top is the produce of the base width and TrunkTaper.



Shader Guide 170

© 2001-2014 SiTex Graphics, Inc.

TrunkWobble adds random variation along the tree trunk.  TrunkBend gives a range of angles that
cause the tree to bend as it grows.

If the TrunkSurface parameter is not null, it defines the surface shader for the trunk.  The other
shading-related parameters for the trunk are passed to the surface shader as follows:

Tree parameter Surface parameter

TrunkColorMap ColorMapName

TrunkBumpMap BumpMapName

TrunkBump BumpMax

TrunkTextureSize TextureSizeXY

If the TrunkSurface parameter is empty, the trunk inherits the surface shader assigned to the VTree
procedure primitive.

The trunk geometry is defined using a RIB Curves primitive.  The curve definition includes values for
the second standard texture coordinate (t) giving the length along the trunk.  This information allows
textures to be applied to trunks of different lengths without unnatural stretching. TrunkCurveType
gives the curve type to use for rendering, defaulting to a tube.  For trees that are far away, the polyline
or ribbon curve types may be used.  If the TrunkCurveType is set to the empty string, the trunk will
not be rendered.

Branches

Parameter Default Value Range Description

Branches 50 Total number of branches

BranchLengthRatio 0.3 0.3 Branch length relative to trunk height

BranchTilt -10 -110 Branch angle relative to trunk

BranchBend 10 -90 0-360 Bend angle along branch

BranchBendBack 0 0 Optional bend angle for second half of branch

BranchTwist 135 145 Angle of rotation about trunk applied to
successive branches

BranchStart 0.4 Relative position of first branch along trunk

BranchCurveType "tube" Branch curve type

BranchSurface "" Optional branch surface shader

Branches gives the maximum number of branches for a tree of height TrunkHeight.  For trees
shorter or taller than the average height, the Branches value is scaled proportionally.  Nominal branch
length is given as a range of ratios relative to the tree height.  The actual branch length at any position
along the trunk is also strongly influenced by the tree shape.  BranchStart gives the position of the
first branch relative to the base of the trunk.

BranchTilt gives the angle (as a range) in degrees to tilt the branch away from the trunk.  E.g., a
BranchTilt of 90 would result in a branch perpendicular to the trunk.  If the BranchTilt values are
negative, a special mode is enabled that smoothly interpolates the tilt angle from tree base to tree tip
instead of choosing the tilt angle for each branch randomly.

BranchBend defines an angle range used to bend each branch along its length.  If the
BranchBendBack range is defined, the BranchBend range is used for the first half of the branch,
and the BranchBendBack range is used for the second half, allowing simple S-shaped branches to
be generated.



AIR User Manual171

© 2001-2014 SiTex Graphics, Inc.

BranchTwist is a range of angles used to rotate the starting position of each successive branch
about the trunk axis.

The branch geometry is defined using a RIB Curves primitive.  The curve definition includes values for
the second standard texture coordinate (t) giving the length along the branch.  This information allows
textures to be applied to branches of different lengths without unnatural stretching.
BranchCurveType gives the curve type to use for rendering, defaulting to a tube.  For trees that are
far away, the polyline or ribbon curve types may be used.  If the BranchCurveType is set to the
empty string, branches will not be rendered.

Twigs

Parameter Default Value Range Description

Twigs 30 Max number of twigs per branch

TwigLengthRatio 0.6 0.6 Twig length relative to branch length

TwigTilt 35 55 Twig angle relative to branch

TwigBend 10 -90 0-360 Bend angle along twig

TwigTwist 135 145 Angle of rotation about branch applied to
successive twigs

TwigStart 0 Relative position of first twig along branch

TwigCurveType "ribbon" Twig curve type

TwigSurface "" Optional twig surface shader

Twigs sets the maximum number of twigs per branch.  TwigStart is the relative position of the first
twig along a branch.

Other parameters behave similarly to the equivalent branch parameters.

Leaves

Parameter Default Value Range Description

Leaves 25 Max leaves per twig

LeafSize 0.06 0.08 Leaf size range (absolute values)

LeafAspectRatio 0.9 Leaf width relative to leaf length

LeafTilt 35 55 Leaf angle relative to twig axis

LeafTwist 70 80 Angle of rotation about twig for successive
leaves

LeafColor .18 .45 .04 Base leaf color

LeafColorVaryHSL .2 .2 .2 Per leaf variation in hue, saturation, lightness

LeafSurface "VClay" Leaf surface shader

LeafMask "" Optional opacity mask for leaf

Leaves sets the maximum leaves per twig.  If Leaves is 0, no leaves will be rendered.

The leaf length varies randomly within the range given by LeafSize.  By default leaves are
represented as a polygonal leaf-like pointed oval.  Use LeafAspectRatio to set the leaf width as a
fraction of the leaf length.  LeafTilt and LeafTwist have the same meaning as the equivalent twig
and branch parameters.

LeafColor gives the average leaf color.  The color for an individual leaf is randomly chosen based on
the average color and the maximum variation in hue, saturation, and lightness specified in



Shader Guide 172

© 2001-2014 SiTex Graphics, Inc.

LeafColorVaryHSL.

LeafSurface defines the surface shader to use for the leaves.  LeafMask allows an opacity map to
be used to define more complicated leaf shapes.  If a leaf mask is provided, the leaves are rendered
as square patches (using a Points primitive with point type patch).  Note that using a mask requires
that the leaf surface shader be evaluated during shadow ray evaluation, which can substantially slow
down rendering of traced shadows.  You may wish to use shadow maps or automap shadows with a
leaf mask.

Level of Detail

The VTree shader incorporates a simple level of detail feature for leaves.  Leaves closest to the
camera are represented as a six-sided polygonal shape.  Leaves around 1 pixel in size are rendered
with as 4-sided polygons.  Leaves smaller than a fraction of a pixel are represented as oriented point
primitives.  Each coarser level of detail uses approximately half the memory of the previous level.  The
TreeQuality parameter can be used to shift the transition points for the different levels of detail.  A
large TreeQuality value will force the more detailed representation to be used; a smaller value
causes coarser levels of detail to be used at larger leaf sizes on screen.

Creating a Tree Archive

The VTree shader was created in the Vshade shader creation tool included with AIR.  Vshade can also
be used as a simple interface for creating a tree type as a rib archive.  Here's how:

· Start Vshade.
· Open the VTree shader, located in the vshaders/Procedures directory of your AIR installation.

· Save a second copy of the VTree shader to a different directory so the original shader is not
overwritten (keep the VTree name, just save to a different directory).

· You can now experiment with changing parameters under the Parms tab in the Vshade window.
· By previewing in AIR Show you can easily compare the effects of different parameter changes.  To

render previews to AIR Show instead of the small window in Vshade, check the Use Air Show item in
the Run menu.

· AIR includes a few sample trees in the archives directory.  To load a tree archive (which is just a
shader definition with a set of parameter values), choose Import Parameter Values from the File
menu and pick one of the Tree* rib files in the archives directory of the AIR installation.

· To save a tree for future use, select Export Parameter Values in the File menu to create a RIB
archive with a complete shader definition.  Be sure to set the Procedure bound appropriately on the
View page before exporting.

Using a Tree Archive

A tree archive created with Vshade can be included in a scene using the standard ReadArchive
command.  E.g.,

Translate 1 0 1  # translate the tree into position
ReadArchive "Tree_Quaking_Aspen.rib"

The following user attributes can be used to customize the tree's appearance without modifying the
tree archive:

Attribute "user" "float treeseed" [123]

Sets the tree Seed parameter used for generating random numbers.

Attribute "user" "float treeheight" [6]

Sets the tree height to a specific value.  The height should be in the same units as the tree archive.



AIR User Manual173

© 2001-2014 SiTex Graphics, Inc.

Attribute "user" "float treequality" [1]

Sets the TreeQuality parameter.

Attribute "user" "color leafcolor" [0.2 0.3 0.1]

Sets the average leaf color.

AIR also includes a VInstanceTree instancer shader that creates instances of tree archives at point
locations in a particle system.

Optimization

Here are some tips for reducing the memory requirements and complexity of the trees generated by
the VTree shader:

· For trees that are far from the camera, omit rendering the twigs or branches by setting
TwigCurveType or BranchCurveType to the empty string.  For nearer trees that are still
somewhat far away, set the BranchCurveType to ribbon or polyline instead of tube.

· Setting the LeafColorVaryHSL values to all 0 allows all leaves to share the same color, saving the
storage used by a per-leaf color value.

· Setting the LeafSize min and max to the same value saves a per-leaf width value when leaves are
rendered as points primitives (the lowest level of detail representation).

· For distant trees using fewer leaves that are larger may produce a similar appearance at lower
memory cost han many smaller leaves.

References

The VTree shader was inspired by "Creation and Rendering of Realistic Trees" by Jason Weber and
Joseph Penn.  The shader lacks many features mentioned in the article including:

· Trunk splits
· Branch splitting
· More than 3 levels of branches/leaves
· Automatic detail reduction

See Also:

VInstanceTree instancer shader

10.9 Strokes

Air 14 introduces a new stroke shader type for shading vector-based outlines.

The current stroke shader is declared as a RIB option with

Stroke "shadername" <parameter list>

Strokes are rendered using vector-based outlines.  Outlining must be enabled as well as one or more
of the object-based edge detection methods.  Each edge is rendered as a thick line segement using
the stroke shader.  Stroke width is taken from the current toon:inkwidth attribute, and stroke length is
the edge length extended at either end by half the stroke width.  This extension allows strokes for
adjacent edges to potentially overlap.  The amount of overlap can be increased by using a large ink



Shader Guide 174

© 2001-2014 SiTex Graphics, Inc.

width (and probably compensating for that in the shader by reducing the area covered by the output
pattern).

Writing Stroke Shaders

The following global variables are initialized when a stroke shader is executed:

Ci output color at the current sample

alpha output alpha at the current sample

u,v 2d coordinates mapping the unit rectangle to the rendered
stroke rectangle.  u runs across the stroke, v runs along the
stroke length.

s,t 2d coordinates mapping the unit rectangle to the output
image

A stroke shader can obtain additional information about the current stroke with the following code:

float strokeinfo[3];
attribute("StrokeInfo",strokeinfo);

float areaLength = strokeinfo[0];
float areaWidth = strokeinfo[1];
float strokeId = strokeinfo[2];

The length and width values are in pixels.  The stroke id is a unique identifier assigned to each stroke
(useful for generating per-stroke variation).

Stroke shaders should set output color (Ci) and output alpha like an imager shader.

10.9.1 strokePencil

stroke shader emulating pencil sketching



AIR User Manual175

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

ScaleWidth 0.25 0-1 Stroke width as a fraction of the outline
width

MinWidth 0.02 0-1 Absolute minimum width

Wobble 1 0-1 Stroke angle variation

Fade 0.25 0-1 Stroke fade out at each end

Bias 0.25 0-1 Offset center of stroke toward one end

RandomizeDirection 1 0 or 1 Randomly reverse the direction of
some strokes

ReverseDirection 0 0 or 1 Reverse the direction of every stroke

MaxOverdraw 0.4 Maximum amount to extend a stroke at
the ends as a fraction of the stroke
length

Bend 0.5 0-1 Curved vs. straight stroke

Alpha 1 0-1 Opacity of the stroke

Seed 941 Seed for random effects

ColorEnabled 0 0 or 1 When enabled, use the following color
for the stroke

Color 0 0 0 Override stroke color

DensityMap "" Optional density map file name

DensityMapBlur 0.002 0-1 Density map blur

DensityMapInvert 1 0 or 1 When enabled, invert the map value
(use 1-value)

DensityMin 0.4 0-1 Threshold for low density area

DensityMax 0.7 0-1 Threshold for high density area

DensityPower 8 Exponent applied to density value

Description

The strokePencil shader emulates a pencil sketch.

Stroke width is given as a fraction of the outline thickness defined by the object.  By using a smaller
ScaleWidth value and increasing the outline width for an edge, drawn strokes can be made to overlap
at their ends.

Strokes are drawn thicker in the middle, fading out at each end.  The Fade parameter controls the fade
at each end, and the Bias value determines where the center, or thickest part of the stroke, lies along
the drawing vector.  Wobble allows the direction of the stroke to vary from the underlying stroke vector.

The Bend parameter can be used to draw curved lines instead of straight lines.  Note that ScaleWidth
must by less than 1 for Bend to have any effect.

Density Map

Sometimes areas of an image with many edges may appear to dark when rendered with a stroke
shader.  A density map can be used to selectively thin out lines in dense areas.   The density map itself
can be generated by rendering the scene with all objects white and normal outlines enabled with a
black outline color.

The map file name should be supplied as the DensityMap value, and DensityInvert should be set to 1



Shader Guide 176

© 2001-2014 SiTex Graphics, Inc.

in this case.

DensityMin and DensityMax can be used to control the density range over which strokes are gradually
faded out.

10.9.2 strokeWatercolorEdge

stroke shader for simulating unpainted edges for watercolor effect

Parameter Default Value Range Description

Wobble 1 How much the edge outline varies

Fade 0.1 Fading of edge strokes near the end

Frequency 25 Frequency of edge variation (relative to
the entire image)

Seed 941 Random number seed

EdgeColor 1 1 1 Edge color

Description

This stroke shader is designed to produce the effect of unpainted edges between areas of an image.  It
is part of a suite of shaders written to produce a watercolor appearance.

See Also

VWatercolor surface shader
WatercolorPaper imager shader

10.10 Surfaces

Surface shaders compute the opacity and color of a surface.

Plastics



AIR User Manual177

© 2001-2014 SiTex Graphics, Inc.

SimplePlastic physically plaustible plastic material

VPlastic
general plastic with reflections and texture maps
for color, specular, opacity, and bump

V2SidedPlastic
reflective, textured plastic with separate settings
for the front and back side of a surface

VAnimatedMap plastic shader with animated texture map

VBrushedPlastic brushed or anisotropic plastic

VBlinn plastic with Blinn specular model

VDecal2D
reflective, textured plastic with decals positioned
using standard texture coordinates

VDecal3D reflective, textured plastic with projected decals

paintedplastic simple plastic with texture map (no reflections)

plastic basic plastic without reflections or texture maps

Metals



Shader Guide 178

© 2001-2014 SiTex Graphics, Inc.

SimpleMetal simple physically plausible metal shader

VMetal metal with reflections and optional color map

VBrushedMetal brushed or anisotropic metal

VPhysicalMetal physically plausible metal with color map

VRustyMetal metal with a rust pattern

Glass and Water

OceanSurface ocean water surface (no waves)

OceanSurfaceWithFoam ocean water with foam

VGlass
glass shader for thick, solid glass with
refraction effects

VThinGlass shader for thin glass without refraction

Constant



AIR User Manual179

© 2001-2014 SiTex Graphics, Inc.

constant simple constant-colored shader

Emitter makes a surface behave like an area light when
used with indirect diffuse illumination

Glow constant color with opacity falloff based on
facing ratio

VTexturedConstant constant-colored shader with texture map

VShadowedConstant constant-colored shader with shadows

VShadowedTranspare
nt

transparent surface with shadow used for
opacity

Subsurface Scattering

VTranslucent basic subsurface scattering shader

VSkin skin shader using surface scattering

VTranslucentMarble marble with subsurface scattering

Rough Materials



Shader Guide 180

© 2001-2014 SiTex Graphics, Inc.

matte basic matte/flat-shaded material

VClay rough diffuse surface with optional color map

VConcrete concrete with grooves

VRubber rubber

Shiny Materials

VCeramic ceramic with reflections and optional texture
maps

VCarPaint metallic car paint with clear finish

Textiles

VCloth shader for woven cloth based on measured data

Velvet velvet

VFabric shader for fabric or cloth (ad hoc)

VLeather leather surface shader



AIR User Manual181

© 2001-2014 SiTex Graphics, Inc.

2D Patterns

VBrick2D bricks

VGradient color gradient

VGrid2D grid of 2D lines

VHexTile hexagonal ceramic tile

VPlanks wooden planks

VScreen
metallic or plastic screen with round or square
holes

VShinyTile2D ceramic tiles

VWeave basket-weave pattern

3D Patterns

VMarble simple veined marble

VGranite granite

VWood solid wood



Shader Guide 182

© 2001-2014 SiTex Graphics, Inc.

Curve and Point Shaders

VHair shader to make curves look like hair

VFur shader to make curves look like fur (for Shave
and a Haircut)

VDashes dashed curves

VShadeCarpet surface shader for carpet created with the
instCarpet instancer shader

particle shader for particles and volumetric primitives

Passes



AIR User Manual183

© 2001-2014 SiTex Graphics, Inc.

CausticPass emits caustics only at the current location

ClownPass assigns a unique color based on toon id

depthpass z depth pass

IndirectPass emits indirect diffuse illumination only

massive_occlusion
pass

occlusion pass shader for use with Massive

MotionPass surface shader for recording a motion vector

occlusionpass computes an ambient occlusion pass

ReelSmartMotion computes a motion blur vector for use with the
Reel Smart Motion Blur plug-ins

shadowpass emits shadow values

ShowNormal displays the current shading normal

ShowPosition emits the current shading location X,Y,Z values

UseBackground emits reflection and shadow values for
compositing over a background image

Baking



Shader Guide 184

© 2001-2014 SiTex Graphics, Inc.

 Bake3d baking illumination to a 3D texture

BakedSurface surface using baked illumination maps

BakeTangentNormalMap bake displacement to a tangent space
normal map

NPR Shaders

VSketchOutline uneven outlines for illustration

VTone shader for Gooch-style illustration

VToon shader for cartoon-style rendering

VLines shader for line-drawing illustration

VWatercolor shader for watercolor painting

Additional Shaders

DarkTreeSurface shader for using Dark Tree shaders

FakeCarpet turns a rectangle into a carpet

VLayeredMaterials
shader with multiple materials per surface



AIR User Manual185

© 2001-2014 SiTex Graphics, Inc.

10.10.1 Bake3d

  shader for baking diffuse illumination to a 3D texture

Illumination Model: diffuse

Parameter Default Value Range Description

Bake 1 0 or 1 Switch to enable baking (1) or reading
(0)

BakeMap "" Name of 3D texture to read or write

BakeChannels "diffuse_shado
wed,diffuse_un
shadowed"

Cs,diffuse_shado
wed,diffuse_unsh
adowed

Channels to bake

BakeRadius 0.0 Max distance between shading
samples if baking with collect()

QueryBlur 0.0 Blur distance to add to query region

QueryFilterWidth 1.0 Multipler for sample region size

UseNormal 1 0 or 1 Whether to use the surface normal
when baking or reading the map

FaceForward 1 0 or 1 If 1, ensure that the shading or query
normal is forward-facing

Description

The Bake3d surface shader shows how to bake diffuse illumination to a 3D texture and reuse baked
data for accelerated rendering.

Baking

The Bake3d shader creates a 3D texture map named BakeMap when the Bake parameter is set to 1.
The point map format is based on the file name extension.  In most cases the Air Point Map format
(extension .apm) is the most efficient format for storing and accessing 3D data.

Bake3d supports two methods of sampling a surface during baking:

Image-based sampling

When the BakeRadius parameter is 0 (the default), the shader simply records every shading
sample to the bake map as the image is rendered.  Only those parts of the object visible in the
image will have shading samples recorded.  Surfaces that are nearly parallel to the camera direction
will be more sparsely sampled than those that are nearly perpendicular to the camera.

Multiple threads can write to the same point cloud in this mode.  The baked point cloud cannot be
queried during the same render pass.

This mode works well if the 3D point map will be used from approximately the same camera
position.  For greater coverage of a scene and better sample distribution, 3D point clouds can be
generated from multiple points of view and combined with the AIR Point Tool (airpt).



Shader Guide 186

© 2001-2014 SiTex Graphics, Inc.

Sampling using collect()

If a positive BakeRadius value is provided, the Bake3d shader uses the collect() function to sample
the surface uniformly using BakeRadius as the maximum distance between samples.  The call to
collect samples all objects in the same point set as defined by

Attribute "pointset" "string handle" "name"

This attribute must be set when using this bake mode.

Only 1 thread will be used when sampling the surface.  The baked map can be queried during the
same render pass in which it is created.

The BakeChannels parameter determines which of the supported bake channels are actually written
to 3D point cloud (any or all may be baked):

Cs diffuse illumination multipled by object color

diffuse_shadowed diffuse illumination with shadows

diffuse_unshadowed diffuse illumination without shadows

Reading a baked map

When the Bake parameter is 0, the shader uses the baked map to provide illumination values during
rendering instead of calling the diffuse illumination function.

Sampling of the map is controlled by the QueryBlur and QueryFilterWidth parameters.  By
default the sample region is equal to the area of the current shading sample.  The QueryBlur
parameter can be used to specifier a larger sample region for a blurrier result.

See Also:

3D Textures
collect()

10.10.2 BakedSurface

surface shader using baked maps for diffuse illumination

Illumination model:  plastic with Blinn specular



AIR User Manual187

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

MapAttributeName "user:bakedmap
"

user attribute holding the baked
map name

MapFileName "" Direct file name for baked map to
use instead of querying the above
user attribute

ChannelWithUnshadowed -1 First channel for unshadowed
diffuse values

ChannelWithIndirect -1 First channel with indirect diffuse
values

Diffuse 1 0.0-1.0 Diffuse reflectivity

Specular 0 0.0-1.0 Specular reflectivity

SpecularEccentricty 0.3 Specular size (Blinn eccentricity)

SpecularRolloff 0.7 Blinn rolloff parameter

SpecularColor 1 1 1 Specular color

SpecularApplyShadow 0 Whether to apply the diffuse
shadow value to the specular
lighting

Reflection 0.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or
raytrace for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection
lookup

Description

The BakedSurface surface shader provides a standard plastic material appearance with diffuse values
taken from baked texture maps.

By default the shader queries the user attribute specified in MapAttributeName for the baked map
file name.  If a MapFileName value is provided, that will be used as the bake map name.

At a minimum each baked map should have 3 channels with the total diffuse lighting component
(illumination and surface color).  If the baked map also has 3 channels with the unshadowed diffuse
value, the shader will use that information to compute proper __diffuse_unshadowed
and __shadow output values.  The shader needs to be told where the unshadowed values are stored
in the baked maps by setting the ChannelWithUnshadowed value to the index of the first channel of
the baked values in the map.

Similarly, if the baked map has indirect illum values (again light plus surface color), set the
ChannelWithIndirect value to the index of the first channel.

Specular highlights using a Blinn BRDF can be added to the basic diffuse illumination.  If the
SpecularApplyShadow value is set to 1, the diffuse shadow value will also be applied to the specular
component, which may allow final rendering to be done w/o shadow computations in the light.
(Assuming a pretty simple lighting setup).

Reflections can also be added by setting Reflection to a positive value.



Shader Guide 188

© 2001-2014 SiTex Graphics, Inc.

10.10.3 BakeTangentNormalMap

  surface shader for baking displacement to a tangent space normal map

Parameter Default Value Range Description

RightHand 1 0, 1 whether the current coordinate system
is right-handed

Description

Use this surface shader with BakeAIR to produce a tangent-space normal map from a displacement
shader.  This shader works best when the displacement shader provides the undisplaced normal
vector in a __undisplaced_N output variable.  If the displacement shader does not provide such an
output variable, the BakeTangentNormalMap shader computes the undisplaced normal using the
tangent vectors and accounting for the handedness of the coordinate system.

10.10.4 CausticPass

surface shader returning photon-based caustics at the current shading location.

Parameter Default Value Range Description

Intensity 1.0 Multiplier for recorded value

Description

The CausticPass shader returns the caustics visible at the current shading location if any.

This shader may be useful for baking caustics for use with the caustic_baked light shader.

See Also

caustics
caustic_baked light shader

10.10.5 ClownPass

surface shader that assigns a random color to each object based on its toon id attribute

Parameter Default Value Range Description

Seed 0 Seed for random number generator

Description

The ClownPass surface shader assigns a unique color to each object or facet based on the toon id
attribute used for outline rendering.  The clown pass image can be used to as a source for selection
masks in a paint program.

See Also



AIR User Manual189

© 2001-2014 SiTex Graphics, Inc.

Outlines for Toon Rendering and Illustration

10.10.6 constant

  constant-colored surface

Description

The constant surface shader simply shades an object a constant color by applying the object's color
attribute modulated by the object's opacity.

See Also

VTexturedConstant shader
VShadowedConstant shader

10.10.7 DarkTreeSurface

  interface for Dark Tree shaders

Illumination model:  custom

Features: reflections

Parameter Default Value Range Description

DarkTreeShader "" DarkTree shader file

Diffuse 1.0 0.0-1.0 Diffuse multiplier

Specular 1.0 0.0-1.0 Specular multiplier

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

Incandescence 1 Self-illumination multiplier



Shader Guide 190

© 2001-2014 SiTex Graphics, Inc.

Use2DCoordinates 0 0 or 1 Set to 1 for a 2D pattern using an
object's standard texture coordinates

Texture2DSize 1.0 1.0 Texture width and height for 2D pattern

Texture2DOrigin 0.0 0.0 Location of top, left corner of texture

Texture2DAngle 0.0 Rotation angle in degrees for 2D
pattern

Pattern3DSize 1.0 Size of 3D pattern

Pattern3DOrigin 0 0 0 Offset for 3D pattern

Pattern3DSpace "shader" space Coordinate space for pattern

BumpScale 1 Multiplier for bump effect

TimeScale 1.0 Multiplier for global time value

ColorTweak1Name "" Tweak name

ColorTweak1 1.0 1.0 1.0 Tweak value

ColorTweak2Name "" Tweak name

ColorTweak2 1.0 1.0 1.0 Tweak value

ColorTweak3Name "" Tweak name

ColorTweak3 1.0 1.0 1.0 Tweak value

FloatTweak1Name "" Tweak name

FloatTweak1 0.5 Tweak value

FloatTweak2Name "" Tweak name

FloatTweak2 0.5 Tweak value

FloatTweak3Name "" Tweak name

FloatTweak3 0.5 Tweak value

FloatTweak4Name "" Tweak name

FloatTweak4 0.5 Tweak value

Description

This shader allows any DarkTree shader to be used as a surface shader for AIR.

To use DarkTree shaders, you must have the RMSimbiont from Darkling Simulations installed. The
simbiont is available at www.darksim.com. The RMSimbiont file should be placed in a directory that
is in your shader search path. The shaders directory of the AIR home directory is a good place.

To use a DarkTree shader, enter the name of the DarkTree shader in the DarkTreeShader parameter.
The DarkTree simbiont will look for the DarkTree shader in the search pathes defined with the
SHADERS and SIMBIONT_RM_SHADERS environment variables.

The DarkTreeSurface shader provides a number of tweak parameters that can be used to alter the
tweaks defined for a particular shader. Some user interfaces, such as MatEd, will automatically fill in
the list of tweaks for a particular shader. For those that do not, the tweak names and values can be
entered by hand.

2D or 3D Shading



AIR User Manual191

© 2001-2014 SiTex Graphics, Inc.

The DarkTree shading pattern can be calculated in 2D or 3D. If the Use2DCoordinates parameter is
set to 1, the base shading location will be (s,t,0), where s and t are the standard 2D texture coordinates
for a primitive.

Optimization

If you know that a particular parameter is not used by a given DarkTree shader, setting that parameter
to 0 will speed up rendering. For example, if a shader does not perform bump mapping, setting the
BumpScale parameter to 0 will avoid an unnecessary call to the RMSimbiont.

Set any of the following parameters that are not used to 0 to accelerate rendering: Reflection,
Incandescence, BumpScale.

Animation

DarkTreeSurface uses the shading language time value (set with the Shutter RIB call) multiplied by
the TimeScale parameter as the frame number input for DarkTree shaders.  By varying the time
value in the Shutter call, animated DarkTree shaders can be queried at different times.

See Also

DarkTree overview
DarkTreeDisplacement shader

10.10.8 defaultsurface

  default surface shader

Description

The defaultsurface shader is used whenever no surface shader is assigned to an object.

The default implementation colors the surface as though it were lit by a distant light shining from the
view direction.  This shading allows objects to be visualized even in scenes without lights.

10.10.9 depthpass

  simple surface shader for rendering a depth pass

Parameter Default Value Range Description

mindistance 0.0 Start distance for interpolation

maxdistance 1.0 End distance for interpolation

invert 0 0 or 1 Invert output color

Description

This shader emits a grey-scale color whose intensity corresponds to the distance of the shading



Shader Guide 192

© 2001-2014 SiTex Graphics, Inc.

location to the camera.  Points closer than mindistance to the camera are colored black.  Points
farther away than maxdistance are colored white.  Points that lie between mindistance and
maxdistance are assigned a grey color by linearly interpolating based on the position between
mindistance and maxdistance.

If the invert parameter is set to 1, the output color is inverted (i.e., white becomes black, and black
becomes white).

10.10.10Emitter

surface shader for treating an object as a light emitter

Parameter Default Value Range Description

IndirectIntensity 1 intensity for indirect rays

CameraIntensity 1 intensity for camera rays

ReflectionIntensity 1 intensity for reflection rays

Width 1 nominal width of surface

Length 1 nominal height of surface

TextureName "" Color map name

Description

The Emitter surface shader emulates an area light by adjusting the intensity of the emitted
incandescent color based on the size of the surface.  The Width and Length parameters should be set
so their product is the total surface area of the associated primitive.

See Also

cardlight light shader
arealight light shader

10.10.11FakeCarpet

 surface shader for turning a rectangle into a simple carpet



AIR User Manual193

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Range Description

SizeX 10 Width of box in the X direction

SizeY 10 Width of box in the Y direction

StrandCount 20 Strand count per unit length

StrandLength 0.2 Strand length

StrandWidthFraction 0.1 Strand width as a fraction of strand
length

StrandTiltAngle 90 Average angle in degrees between a
strand tip and the vertical axis

StrandTiltVary 100 Variation in tilt angle

StrandTiltFrequency 40 Frequency of variation relative to the
patch as a whole

StrandPolarAngle 0 Base rotation about the vertical axis

StrandPolarVary 360 Variation in polar angle

StrandPolarFrequency 30 Frequency of polar variation relative to
the carpet rectangle

StrandStiffness 0.2 Stiffness affects the curve shape of each
strand

StrandSelfShadowMax 0.76 Self-shadowing at the base of each
strand

StrandColorVary 0.2 Variation in color of each strand

StrandBaseVary 0.2 Variation in the base position of each
strand

FrontScatter 0.9 Forward scattering light multiplier

BackScatter 0.3 Backward scattering multiplier

ScatterPower 0.5 Exponent applied to the variation in
scattering due to angle

ColorMapName "" Optional color map

BaseColor .76 .76 .65 Color for the rectangle patch under the
strands

BaseSelfShadow 0.85 Shadowing the rectangle base due to
the carpet strands

SampleGridSize 2 Grid size for internal ray tracing

IndirectDiffuse 0.5 Multiplier for the diffuse result returned
when the shader is queried by an
indirect ray



Shader Guide 194

© 2001-2014 SiTex Graphics, Inc.

TestForIntersections 1 0 or 1 Whether to trace rays to test for objects
intersecting the carpet

TraceBias 0.02 Offset used when tracing for
intersections

TraceMargin 0.05 Border region with no strands

TraceTip 1 0 or 1 Whether to trace a sphere at the tip of
each strand

TraceJoints 1 0 or 1 Whether to trace a sphere at the joint
between each curve segment

ShadingSpace "world" spaces Coordinate space for shading

Air 13 introduces a new FakeCarpet surface shader that turns a simple rectangle into a patch of fuzzy
carpet.  The carpet effect is produced by ray tracing a virtual field of carpet fibers inside the surface
shader; no additional geometry is created in the scene.

Getting Started

Here's how to add carpet to a room model:

· Create a four-sided polygon and position it slightly above the floor.  The polygon should represent
the top of the area to be covered by the carpet.  Make the polygon invisible to shadow rays.

· Assign the FakeCarpet surface shader.  You will probably want to disable the material preview
window in your application when tuning this shader because the preview render can take a long time.

· Set the SizeX and SizeY parameters to the width and length of the carpet rectangle.  SizeX gives the
size along the first texture coordinate axis, SizeY the size along the second texture coordinate axis.

· Set StrandLength to the length of the carpet fibers, which should be less than or equal to the height
of the polygon above the floor.

That completes the the required steps to use the FakeCarpet shader.  You should then be able to
render a test image of your scene and see some carpet.

Carpet Shape

The carpet is modeled as a grid of carpet fibers.  The geometric model of the fibers can be tuned using
the following parameters:

StrandCount, StrandWidthFraction

The overall density of the fibers is set with StrandCount, which gives the number of fibers per unit
length.  The diameter of a fiber is given by the StrandWidthFraction parameter as a fraction of the
fiber length.

StrandTiltAngle, StrandTiltVary, StrandTiltFrequency, StrandStiffness
StrandPolarAngle, StrandPolarVary, StrandPolarFrequency

Individual fibers are represented as curved tubes.  StrandTiltAngle gives the average angle (in
degrees) between the vertical direction and the tip of a fiber.  The tilt angle can be varied for each
fiber using StrandTiltVary and StrandTiltFrequency.   StrandTiltFrequency is relative to the entire
patch of carpet.  StrandStiffness controls how each fiber bends.  Higher values push the curve more
toward the tip of each tube.

The direction of tilt can be changed using the StrandPolar parameters, which control a rotation in
degrees about the vertical axis.



AIR User Manual195

© 2001-2014 SiTex Graphics, Inc.

StrandSegments, TraceTip, TraceJoint

Each fiber is represented as a chain of tubular line segments.  StrandSegments gives the number of
segments per fiber.  Each segment can be capped with a sphere.  TraceTip controls whether a
sphere is traced at the tip of each fiber.  TraceJoints controls whether spheres are traced at the
joints between segments in a fiber.

Carpet Shading

The carpet is shaded using an empirical model that assumes some light is reflected from the front of
each fiber and some is transmitted.

FrontScatter, BackScatter, ScatterPower

FrontScatter gives the fraction of light reflected from the front of a fiber.  BackScatter gives the
amount transmitted from behind.  Both are modulated based on the angle between the shading
normal and the view direction such that more light is transmitted along the fiber edges and less in the
middle.  The ScatterPower parameter is an exponent applied to the angle cosine used for this edge-
based variation.

SelfShadowMax, ColorMapName, BaseColor, IndirectDiffuse

SelfShadowMax gives the maximum self-shadowing of the carpet (the shadowing effect of
neighboring fibers).  Self-shadowing is greatest at the base of each fiber and smoothly attenuates to
zero at the tip.

ColorMapName allows a color map to be applied to the fibers.

BaseColor gives the color of the "fabric" under the fibers, which is visible where fibers are missing.

IndirectDiffuse is a simple multiplier for the diffuse result returned for indirect illumination.  The
shader does not trace fibers for indirect rays.

Carpet Trace Controls

The FakeCarpet shader performs ray tracing to determine which fibers are visible at each shading
location.  The following parameters control this internal ray tracing process:

SampleGridSize

Because the carpet fibers will typically be much smaller than a pixel, the shader provides an option
to trace multiple rays to produce a smoother, more accurate result.  SampleGridSize defines the size
of an NxN grid of rays to trace at the current shading location.  The grid size is automatically reduced
to 1 for reflection rays and IPR (interactive preview) rendering.

TraceMargin

The FakeCarpet shader treats the rectangular polygon as a sort of window into a virtual grid of 3D
fibers.  There can be artifacts along the edges if this "window" clips the carpet.  To help prevent
those artifacts, the TraceMargin parameter strips away a fraction of the fibers along the carpet
border.  Larger values remove more rows of fibers.

TestForIntersections, TraceBias

TestForIntersections determines whether the shader checks for objects intersecting the carpet (such
as a chair leg).  If there are no objects on the carpet, set this parameter to 0 to save some time and



Shader Guide 196

© 2001-2014 SiTex Graphics, Inc.

potentially avoid some artifacts.  The TraceBias parameter gives an offset used to avoid incorrect
intersections in this test.

Final Remarks

The FakeCarpet surface is a fairly complicated shader, and you will likely need to experiment with the
parameters to reproduce the appearance of a particular type of carpet.  An IPR session (utilizing
TweakAir) can be used to interactively view the effects of parameter changes.

See Also

instCarpet instancer shader

10.10.12Glow

  surface shader with constant color and opacity falloff based on facing ratio (angle between
viewer and surface normal)

Parameter Default Value Range Description

Intensity 1.0 Overall emitted intensity multiplier

AlphaFalloff 4.0 Exponent applied to facing ratio for
alpha/opacity interpolation

ColorFalloff 1.0 Exponent applied to facing ratio for
color interpolation

EdgeAlpha 0 Alpha/opacity value at edges

EdgeColor 1 1 1 Color at edge if EdgeColorEnable is 1

EdgeColorEnable 0 0 or 1 When 1, interpolate color using
ColorFalloff and EdgeColor

Description

The Glow surface shader can be used to simulate illumination emitted from a glowing object.  The
Glow shader is assigned to an object modeled to represent the extent of glow emitted by the glowing
object.  Typically the Glow object will encompass the glowing object.  E.g., in the thumbnail image
above, the Glow shader is assigned to a second torus with a larger minor radius than the glowing
torus.

The Glow shader interpolates opacity based on the facing ratio, which is the cosine of the angle
between the viewing direction and the surface normal. The facing ratio ranges from 0 when looking at
a surface on-edge to 1 when looking directly at a surface.  The AlphaFalloff parameter controls
how quickly the opacity value changes with angle.

When EdgeColorEnable is set 1, color is also interpolated based on the facing ratio.



AIR User Manual197

© 2001-2014 SiTex Graphics, Inc.

10.10.13IndirectPass

surface shader recording indirect diffuse illumination

Parameter Default Value Range Description

Intensity 1.0 Multiplier for recorded value

Samples -1 0.0-1.0 If greater than 0, the number of rays to
trace for each indirect sample

Description

This surface shader stores the indirect diffuse illumination result at the current shading location as
returned by the indirectdiffuse() function.

Note that this shader REQUIRES use of an indirect shade mode that does not evaluate the surface
shader (mode matte or mode constant).

If the Samples value is less than 1, the number of traced rays is taken from the indirect nsamples
attribute value for the object.

This shader may be useful when "baking" indirect illumination for use with AIR's indirect_baked light
shader.

See Also

Indirect lighting
indirect_baked light shader
indirectdiffuse() shading language function

10.10.14massive_occlusionpass

  surface shader for rendering an ambient occlusion pass with Massive

Parameter Default Value Range Description

coneangle 1.57 Half-angle for cone of directions to
sample

invert 0 When set to 1, the output value is
inverted

samples 256 rays to trace to estimate occlusion

maxhitdist 500 max distance to search for occluding
objects

shadowbias 0.1 offset to prevent incorrect self-
shadowing

Description

The massive_occlusionpass surface shader sets the output color to the ambient occlusion value at the
surface location.  The average unoccluded direction is emitted in the Nunoccl output variable.

Output only variables



Shader Guide 198

© 2001-2014 SiTex Graphics, Inc.

normal Nunoccl Average unoccluded direction

See Also

Ambient occlusion
envlight light shader
Ambient occlusion in Massive

10.10.15matte

  standard matte surface shader

Illumination Model:  matte

Parameter Default Value Range Description

Ka 1.0 0.0-1.0 Ambient reflectivity

Kd 1.0 0.0-1.0 Diffuse reflectivity

Description

The shader simulates a flat or matte shaded surface.  The surface color is taken from the object's color
attribute.

For a matte surface with a texture map, use the VClay shader with the DiffuseRoughness
parameter set to 0.

See Also

VClay surface shader

10.10.16metal

  simple metal shader with no reflections

Illumination Model:  metal

Parameter Default Value Range Description

Ka 1.0 0.0-1.0 Ambient reflectivity

Kd 0.0 0.0-1.0 Diffuse reflectivity

Ks 1.0 0.0-1.0 Specular reflectivity

roughness 0.1 0.01-1.0 Specular roughness

Description

The very simple metal shader with no reflections is included for compabitility with the RenderMan®
Interface Specification.  For metal with reflections, use the VMetal shader instead.

See Also



AIR User Manual199

© 2001-2014 SiTex Graphics, Inc.

VMetal shader

10.10.17MotionPass

surface shader for recording a motion vector

Parameter Default Value Range Description

MotionSpace "camera" space coordinate space for output vector

OpacityMap "" optional opacity map

BinaryTest 0 0, 1 whether to convert the opacity map
result to binary (0 or 1) based on the
BinaryThreshold

BinaryThreshold 0.5 threshold for converting opacity map
result to 0 or 1

Description

This shader emits the motion vector at the current shading location in the specified coordinate space.

10.10.18occlusionpass

  surface shader for rendering an ambient occlusion pass

Parameter Default Value Range Description

coneangle 1.57 Half-angle for cone of directions to
sample

invert 0 When set to 1, the output value is
inverted

mapname "raytrace" raytrace or name of occlusion map

mapblur 0.01 0.0-1.0 Blur for occlusion map

mapbias 0.01 Bias for occlusion map

maxsolidangle 0.05 Max angle in radians for grouping of
points in point-based occlusion

Description

The occlusionpass surface shader sets the output color to the ambient occlusion value at the surface
location.  The average unoccluded direction is emitted in the Nunoccl output variable.

When the mapname parameter is set to "raytrace", ray tracing is used to compute the ambient
occlusion at each point.  Otherwise, mapname is treated as the file name for an occlusion map with
occlusion information.

Output only variables

normal Nunoccl Average unoccluded direction



Shader Guide 200

© 2001-2014 SiTex Graphics, Inc.

See Also

Ambient occlusion
envlight light shader
massive_occlusionpass surface shader

10.10.19OceanSurface

  surface shader for ocean water (no wave simulation is included in this shader)

Illumination Model:  custom

Parameter Default Value Range Description

Diffuse 0 0.0-1.0 Diffuse reflectivity

DiffuseColor .44 .47 .6 Diffuse color

DeepSeaIntensity .1 Deep sea color multiplier

DeepSeaColor .21 .29 .47 Deep sea color

Specular 0.5 Specular intensity

SpecularRoughness 0.1 Specular roughness

Reflection 0.9 Reflection multiplier

ReflectionSamples 1 Number of reflection rays to
trace

ReflectionBlur 0 Blur angle for reflection (in
radians)

Transmission 0 Transmission multiplier

TransmissionMaxHitDist 1000 Max distance to trace
transmission rays

TransmissionSamples 1 Rays to trace for refraction

TransmissionFalloff 0 Exponent for transmission decay
with distance

TransmissionBlur 0 Blur angle for transmission rays

TransmissionNearColor .3 .5 .4 Color for sea close to observer

Description

The OceanSurface shader provides a basic illumination model for a deep ocean surface.  No waves
are provided (use a displacement shader for those).

The deep sea color result is emitted as an incandescence value and simply added to the other shading
components.

When Transmission is not 0, refraction rays are traced to capture objects beneath the water.  The
transmission result can be faded out based on distance if the TransmissionFalloff value is non-zero.

See Also

OceanSurfaceWithFoam surface shader



AIR User Manual201

© 2001-2014 SiTex Graphics, Inc.

OceanWaves displacement shader

10.10.20OceanSurfaceWithFoam

  surface shader for ocean water with foam (companion to the OceanWaves displacement
shader)

Illumination Model:  custom

Parameter Default Value Range Description

Diffuse 0 0.0-1.0 Diffuse reflectivity

DiffuseColor .44 .47 .6 Diffuse color

DeepSeaIntensity .1 Deep sea color multiplier

DeepSeaColor .21 .29 .47 Deep sea color

Specular 0.5 Specular intensity

SpecularRoughness 0.1 Specular roughness

Reflection 0.9 Reflection multiplier

ReflectionSamples 1 Number of reflection rays to trace

ReflectionBlur 0 Blur angle for reflection (in radians)

Transmission 0 Transmission multiplier

TransmissionMaxHitDist 1000 Max distance to trace transmission
rays

TransmissionSamples 1 Rays to trace for refraction

TransmissionFalloff 0 Exponent for transmission decay
with distance

TransmissionBlur 0 Blur angle for transmission rays

TransmissionNearColor .3 .5 .4 Color for sea close to observer

Foam 1 Foam multiplier

FoamColor 1 1 1 Foam color

FoamOpacity 1 Extent to which foam obscures
water

FoamIllumination 0.5 Multiplier for foam lighting

FoamIncandescence 0.5 Constant added to foam lighting

FoamRawOffset 0.95 Raw offset added to the base foam
value

FoamRawMultiplier 10 Multiplier for raw foam value

FoamPower 2 Exponent for foam value



Shader Guide 202

© 2001-2014 SiTex Graphics, Inc.

GridCountX 128 Grid size in X direction

GridCountY 128 Grid size in Y direction

SizeX 200 Nominal size of X dimension

SizeY 200 Nominal size of Y dimension

WindSpeed 5 Wind speed

WindAlign 8 Wave alignment with wind direction

WindDir 0 Wind direction as an angle in
degrees

SmallWave 0.1 Small waves will be ignored

Dampen 0.75 Amount to dampen waves not
aligned with the wind

Chop 1 Amount of chop to add to waves

FramesPerSecond 24 Value used to compute current time
for animation

FoamEnabled 1 0 or 1 Whether foam needs to be
simulated for the surface shader

RandomSeed 123 Base for random number generator

Description

The OceanSurfaceWithFoam shader provides a basic illumination model for a deep ocean surface
with a foam option for use with the OceanWaves displacement shader.

The deep sea color result is emitted as an incandescence value and simply added to the other shading
components.

When Transmission is not 0, refraction rays are traced to capture objects beneath the water.  The
transmission result can be faded out based on distance if the TransmissionFalloff value is non-zero.

Waves

The companion OceanWaves displacement shader computes waves by evaluating a simulation. In
order for foam to appear in the proper location, the common parameters between the OceanWaves
and OceanSurfaceWithFoam shaders must be set to the same values.

The wave simulation is evaluated on a discrete grid, which is mapped to the unit interval in texture
space.  X corresponds to the first texture coordinate, Y to the second coordinates.  The GridCountX
and GridCountY parameters give the grid size.  A larger grid produces more detail but takes longer to
compute.

SizeX and SizeY give the nominal size of the ocean area.

The waves can be tiled in X and Y.

WindSpeed gives the average wind speed.  Higher values produce larger waves.  WindDir can be
used to change the wind direction by providing an angle in degrees about the vertical axis.

WindAlign controls how much the wind direction influences the wave directions by applying an
exponent to the dot product of the wind direction and the direction of each wave.  Larger values reduce
the amplitude of waves not in the direction of the wind base on the Dampen factor.

Chop



AIR User Manual203

© 2001-2014 SiTex Graphics, Inc.

The appearance of waves in windy conditions can be improved using the Chop parameter, which
sharpens wave peaks and stretches troughs by shifting the surface laterally.  Because the chop
displacement shifts the surface in arbitrary directions, you'll need to tell Air that the displacement is not
strictly in the direction of the surface normal by applying the following attribute:

Attribute "render" "normaldisplacement" [0]

Note that too much chop can tear the surface apart.

Foam

The Chop parameter must be greater than 0 in order for foam to be generated.  You will need to
experiment with the FoamRawOffset and FoamRawMultiplier values to obtain a suitable base level of
foaminess.

Animation

The waves will be animated based on the current frame number.  The current time value is the current
frame number divided by the FramesPerSecond value.

For speed the simulation is computed using the seawave dynamic shadeop (DSO) included with Air.

See Also

OceanWaves displacement shader

10.10.21paintedplastic

  plastic surface with a single texture map for color

Illumination Model:  plastic

Features:  texture map

Parameter Default Value Range Description

Ka 1.0 0.0-1.0 Ambient reflectivity

Kd 0.5 0.0-1.0 Diffuse reflectivity

Ks 0.5 0.0-1.0 Specular reflectivity

roughness 0.1 0.01-1.0 Specular roughness

specularcolor 1 1 1 Specular highlight color

texturename "" Texture file name

repeatx 1 Copies in the X direction

repeaty 1 Copies in the X direction

originx 0.0 Location of left edge of texture map

originy 0.0 Location of top edge of texture map

Description

The shader simulates a colored plastic surface with a (usually white) shiny specular highlight.  The



Shader Guide 204

© 2001-2014 SiTex Graphics, Inc.

base surface color is taken from the primitive's color attribute or from the optional texture map.  The
texture map is placed using the object's standard texture coordinates.

The roughness parameter controls the size of the specular highlight:  larger roughness values produce
larger highlights.

See Also

VPlastic shader

10.10.22particle

  surface shader for volume and point primitives

Illumination Model:  custom

Parameter Default Value Range Description

Diffuse 1.0 Diffuse reflectivity

Incandescence 0.0 Self-illumination value

Ambient 0.0 0.0-1.0 Ambient reflectivity

OpacityMultiplier 1.0 Opacity multiplier

PrimaryScatter 0.0 -1 to 1 Primary scattering direction

PrimaryScatterWeight 1.0 0.0-1.0 Relative weight of primary
scattering

PrimaryScatterColor 1.0 1.0 1.0 color Per-channel scattering multiplier

SecondScatter 0.0 -1 to 1 second scattering direction

SecondScatterColor 1.0 1.0 1.0 color Per-channel scattering multiplier

AngleFalloff 0.0 Exponent for angle-based opacity
falloff (for spherical particles)

Description

The particle shader implements a single-scattering illumination model for lighting volume and point
primitives.

Isotropic Scattering

When the PrimaryScatter parameter is 0 and the PrimaryWeight parameter is 1, this shader
produces isotropic scattering, in which incoming light is scattered equally in all directions.  The result is
a simple sum of the incoming light.  (This shader omits the 1/4PI term from the usual isotropic
scattering equation; you can adjust for this factor by setting the Diffuse parameter to ~0.08.)

Anisotropic Scattering

When the PrimaryWeight parameter is 1, a non-zero PrimaryScatter value will produce
preferential scattering in one direction.  If the scatter value is greater than 0, more light is reflected
forward, along the direction of the incoming light.  If the scatter value is negative, more light is reflected
back towards the light source.  The PrimaryScatterColor parameter can be used to adjust the



AIR User Manual205

© 2001-2014 SiTex Graphics, Inc.

scatter direction independently for each color channel.

The following image illustrates isotropic scattering, forward scattering (0.5), and backward scattering (-
0.5) with blue light striking the front of the spheres and red light striking the back.

Scattering in Two Directions

When the PrimaryWeight parameter is less than 1, the shader uses a weighted sum of scattering in
two directions, given by the primary and secondary parameter settings.  The second scattering
contribution is weighted by 1-PrimaryScatterWeight.

Reference Values

In Principles of Digital Image Synthesis Glassner presents values for several common types of
scattering, summarized in the table below:

Type Examples PrimaryWeight PrimaryScatter SecondScatter

Rayleigh dust, cigarette smoke 0.5 -0.46 0.46

Hazy Mie sparse water droplets (fog) 0.12 -0.50 0.70

Murky Mie dense droplets (thick fog) 0.19 -0.65 0.91

See Also

Volume Primitives

10.10.23plastic

  standard plastic surface shader

Illumination Model:  plastic

Parameter Default Value Range Description

Ka 1.0 0.0-1.0 Ambient reflectivity

Kd 0.5 0.0-1.0 Diffuse reflectivity

Ks 0.5 0.0-1.0 Specular reflectivity

roughness 0.1 0.01-1.0 Specular roughness

specularcolor 1 1 1 Specular highlight color

Description

The shader simulates a colored plastic surface with a (usually white) shiny specular highlight.  The
base surface color is taken from the primitive's color attribute.



Shader Guide 206

© 2001-2014 SiTex Graphics, Inc.

The roughness parameter controls the size of the specular highlight:  larger roughness values produce
larger highlights.

See Also

VPlastic shader
V2SidedPlastic shader
VBrushedPlastic shader

10.10.24ReelSmartMotion

surface shader that computes a motion vector for the ReelSmart Motion Blur plugin from RE:Vision
Effects, Inc. (www.revisionfx.com)

Parameter Default Value Range Description

MaxDisplace 32 Max pixel distance that can be stored

TargetSpace raster spaces Coordinate space for output vector

Description

This surface shader computes a motion vector compatible with the ReelSmart Motion Blur plugin.  To
obtain useful output, the scene must have motion blur defined and enabled.

Set the MaxDisplace parameter to the same value used in the plugin.  The vector image should be
rendered with the following settings:

· PixelSamples 1 1

· A box filter with a filter width of 1.

· Gamma correction disabled (gamma set to 1).

· For an 8-bit image, quantization should be set as

Quantize "rgba" 254 0 255 0

For a 16-bit image, quantization should be

Quantize "rgba" 65534 0 65535 0

Reference

This shader is based on the information at:

http://www.revisionfx.com/generalfaqsMVFormat.htm#alpha

10.10.25shadowpass

  surface shader that computes a shadow pass



AIR User Manual207

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

backshadow 0 0 or 1 Set to 1 for shadows on surfaces
facing away from a light

fuzz 0.05 0-1 Transition softness along silhouette
edges when backshadow=1

Description

This shader sets the output color to a shadow value for the current shading location.  This shader only
works properly with lights that export a color __unshadowed_Cl output variable.  All AIR light shaders
as well as the MayaMan and RhinoMan light shaders should work properly.

10.10.26shinymetal

  metal shader with reflections

Illumination model:  metal

Features: reflections

Parameter Default Value Range Description

Ka 1.0 0.0-1.0 Ambient reflectivity

Kd 0.0 0.0-1.0 Diffuse reflectivity

Ks 1.0 0.0-1.0 Specular reflectivity

roughness 0.1 0.01-1.0 Specular roughness

Kr 1.0 0.0-1.0 Reflection strength

texturename "raytrace" Name of reflection map or
"raytrace" for ray tracing

Description

The shinymetal surface shader is included for compabitility with the RenderMan® Interface
Specification.  For a more flexible metal shader with reflections use the VMetal shader instead.

See Also

VMetal shader

10.10.27ShowNormal

  surface shader for displaying the shading normal at the current location



Shader Guide 208

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

UseUnitRange 1 0 or 1 When enabled, the x,y, and z
components of the normal are scaled
and offset to lie in the range 0 to 1

FaceForward 1 0 or 1 When enabled, the displayed normal is
always facing forward (toward the
camera)

Normalize 1 0 or 1 When enabled, the normal vector is
normalized

ShadingSpace "shader" space coordinate space of displayed normal

10.10.28ShowPosition

  surface shader for displaying X,Y,Z coordinates at each location

Parameter Default Value Range Description

UnitSize 1 Divisor for emitted position values

Origin 0 0 0 Center point for position values

Clamp 0 0 or 1 When set to 1, emitted values are
clamped to the unit interval

Cyclic 0 0 or 1 When set to 1, emitted values will
repeat over the unit interval

ShadingSpace world spaces coordinate space for emitted values

Description

The ShowPosition surface shader sets the output color to the X,Y,Z coordinates of the current shading
position P, with optional offset and scaling:

Output Color = (Position-Origin)/ UnitSize

When the Clamp parameter is set to 1, the output color is clamped to the unit interval.

When the Cyclic parameter is set to 1, the output color is restricted to the fractional part of the offset
and scaled position.

10.10.29SimpleMetal

 physically plausible metal shader with simple parameters



AIR User Manual209

© 2001-2014 SiTex Graphics, Inc.

Illumination Model:  physical metal

Parameter Default Value Range Description

Reflectance 0.9 0.0-1.0 Reflectivity

Roughness 0.03 0.0-1.0 Surface roughness

Samples 8 1-1024 Number of rays traced for reflections

Description

This surface shader provides a physically plausible metallic appearance.  The metal's color is taken
from the standard color attribute.  The Reflectance parameter scales the result for both specular
highlights and reflections.  Roughness controls the blurriness of reflections and the size of specular
highlights - larger values produce blurrier reflections and larger highlights.  Samples gives the number
of rays to trace for reflections.  For larger Roughness values, more samples may be needed to
produce a smooth result.

See Also

VMetal surface shader
VPhysicalMetal surface shader

10.10.30SimplePlastic

 physically plausible plastic shader with simple parameters

Illumination Model:  physical plastic

Parameter Default Value Range Description

Diffuse 1.0 0.0-1.0 Multiplier for diffuse

Specular 1.0 0.0-1.0 Multiplier for specular and reflections

Roughness 0.03 0.0-1.0 Surface roughness

Samples 4 1-1024 Number of rays traced for reflections

Description

This surface shader provides a physically plausible plastic or dielectric material.  The base color is
taken from the standard color attribute.  The Specular parameter scales the result for both specular
highlights and reflections.  Roughness controls the blurriness of reflections and the size of specular
highlights - larger values produce blurrier reflections and larger highlights.  Samples gives the number
of rays to trace for reflections.  For larger Roughness values, more samples may be needed to
produce a smooth result.

See Also

VPhysicalPlastic surface shader
VPlastic surface hader



Shader Guide 210

© 2001-2014 SiTex Graphics, Inc.

10.10.31UseBackground

 surface shader that computes shadows and/or reflections for compositing over a background image

Parameter Default Value Range Description

ShadowMask 1.0 0.0-1.0 Multiplier for shadow value

Reflection 1.0 0.0-1.0 Multiplier for reflections

ReflectionSamp
les

1 Number of rays to trace for
reflections

ReflectionBlur 0 Blur angle in radians for
reflections

ReflectionAlpha 1 Multiplier for the reflection alpha

Description

The UseBackground surface shader produces output useful for compositing over a background image.
The output color is the reflection result, multiplied by the Reflection parameter.  A reflection alpha is
value is provided in an extra output variable named __reflection_alpha.  If no reflections are desire, set
the Reflection parameter to 0, and no reflections will be traced.

The emitted opacity value is the maximum of the reflection alpha and the computed shadow value.  If
no shadows are desired, set the ShadowMask value to 0, and no shadows will be computed.

10.10.32V2SidedPlastic

  reflective plastic with separate controls for the front and back sides of a surface

Illumination model:  plastic

Features:  texture maps, reflections



AIR User Manual211

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

DiffuseFront 0.5 0.0-1.0 Diffuse reflectivity of front side

DiffuseBack 0.5 0.0-1.0 Diffuse reflectivity of back side

SpecularFront 0.5 0.0-1.0 Specular reflectivity of front side

SpecularBack 0.5 0.0-1.0 Specular reflectivity of back side

RoughnessFront 0.1 0.0-1.0 Specular roughness of front side

RoughnessBack 0.1 0.0-1.0 Specular roughness of back side

ReflectionFront 0.5 0.0-1.0 Reflection strength of front side

ReflectionBack 0.5 0.0-1.0 Reflection strength of back side

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

BackColor 1 0 0 Base color for back side

FrontTextureName "" Texture name for front side

FrontTextureBlur 0.0 0.0-1.0 Texture blur for front side

FrontTextureSizeXY 1 1 Texture size in X and Y directions

FrontTextureOriginXY 0 0 Location of left, top texture edge

FrontTextureProjection "st" projections Projection to use for 2D coordinates

FrontTextureSpace "shader" spaces Coordinate space for projection

FrontTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

BackTextureName "" Texture name for back side

BackTextureBlur 0.0 0.0-1.0 Texture blur for back side

BackTextureSizeXY 1 1 Texture size in X and Y directions

BackTextureOriginXY 0 0 Location of left, top texture edge

BackTextureProjection "st" projections Projection to use for 2D coordinates

BackTextureSpace "shader" spaces Coordinate space for projection

BackTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The V2SidedPlastic surface shader provides a basic reflective, textured plastic shader with separate



Shader Guide 212

© 2001-2014 SiTex Graphics, Inc.

controls for the front and back sides of a surface.

The base color of the front side is taken from the object's color attribute.  The base color for the back
side is set with the BackColor shader parameter.

Front and back sides may each have a texture map with completely separate mapping controls.

10.10.33VAnimatedMap

  surface shader with animated texture map

Illumination model:  plastic

Features: reflections, animated texture map

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

Reflection 0.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

MapBase "" Map base name minus frame number

MapExtension ".tif" File name extension for maps

MapCount 1 Number of maps

MapDuration 1 Number of frames to display each map

FrameStart 0 Frame for map number 0

FrameEnd 9999 Frame at which to stop animating

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Description

The VAnimatedMap surface shader allows a sequence of numbered maps to be displayed during an
animation.  The maps should have a common base name, followed by a 4-digit index (zero-padded),
followed by the file name extension.  The first map should be numbered 0.

Animation begins at the frame given in FrameStart with map number 0 (which is also displayed for any



AIR User Manual213

© 2001-2014 SiTex Graphics, Inc.

earlier frames).  Every MapDuration frames, the current map number is incremented.  When the
current map number reaches MapCount, the current map number is reset to 0.

If the texture map has an alpha channel, the alpha channel result is applied as the surface opacity.

10.10.34VBlinn

  plastic shader with Blinn specular model, reflections, and texture maps

Illumination model:  plastic with Blinn specular

Features: reflections, texture map

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularSize 0.3 0.0-1.0 Specular size (Blinn eccentricity)

SpecularRolloff 0.7 Blinn rolloff parameter

Reflection 0.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur



Shader Guide 214

© 2001-2014 SiTex Graphics, Inc.

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VBlinn surface shader provides a plastic appearance using the Blinn specular model.

The optional color map, if present, is composited over the underlying base color (given by the color
attribute) based on the texture alpha.  For a texture map without an alpha channel, the map result
replaces the base surface color.

The specular texture map modulates both the specular and reflection components.

Per-light Output Variables

In addition the standard output variables provided by most Air shaders, the VBlinn shader provides
output variables with per-light results for diffuse, unshadowed diffuse, shadow, and specular
components of the shading model:

__lights[i] surface as illuminated by light channel i

__lights_diffuse[i] diffuse component for light channel i

__lights_unshadowed[i] unshadowed diffuse for light channel i

__lights_shadow[i] shadow for light channel i

__lights_specular[i] specular for light channel i

Each per-light array holds up to 10 channels of data, numbered 0 through 9.  Assign a light to a
particular channel by setting the light shader's __channel variable.

Sample RIB usage:

Declare "__lights" "varying color[10]"
Declare "__lights_diffuse" "varying color[10]"
Declare "__lights_unshadowed" "varying color[10]"
Declare "__lights_shadow" "varying color[10]"
Declare "__lights_specular" "varying color[10]"

Display "+light0.tif" "framebuffer"
"__lights[0],__lights_diffuse[0],__lights_unshadowed[0],__lights_shadow[0],
__lights_specular[0]"
  "quantize" [0 255 0 255]

Display "+light1.tif" "framebuffer"
"__lights[1],__lights_diffuse[1],__lights_unshadowed[1],__lights_shadow[1],
__lights_specular[1]"
  "quantize" [0 255 0 255]



AIR User Manual215

© 2001-2014 SiTex Graphics, Inc.

LightSource "spotlight" 22 "float __channel" [0]

LightSource "pointlight" 23 "float __channel" [1]

See Also:
Light Channels

10.10.35VBrick2D

  basic brick shader with grooves

Illumination Model:  matte

Diffuse 0.8 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.3 0.0-1.0 Diffuse roughness

BrickWidth 0.25 Brick width

BrickHeight 0.08 Brick height

BrickColorVary 0.4 Per-brick color variation

MortarWidth 0.01 Mortar width

MortarColor 0.6 0.6 0.6 Mortar color

Stagger 0.5 0.0-1.0 Fraction to offset every other row

EdgeVary 0.01 Unevenness of brick edges

EdgeVaryFrequency 4.0 Frequency of brick edge unevenness

GrooveDepth 0.01 Depth of mortar groove

PockDepth 0.01 Depth of indentations

PockWidth 0.01 Average size of pock marks

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

This shader produces a simple brick surface with grooves for the mortar.

The base brick color is taken from the object's color attribute.  The BrickColorVary parameter allows
the intensity of the brick color to be varied for each brick.



Shader Guide 216

© 2001-2014 SiTex Graphics, Inc.

10.10.36VBrushedMetal

  brushed metal surface with reflections

Illumination model:  reflective anisotropic metal

Features: reflections

Parameter Default Value Range Description

Ambient 0.1 0.0-1.0 Ambient reflectivity

Diffuse 0.1 0.0-1.0 Diffuse reflectivity

Specular 0.2 0.0-1.0 Specular reflectivity

SpecularRoughnessX 0.1 0.01-1.0 Specular roughness in X direction

SpecularRoughnessY 0.3 0.01-1.0 Specular roughness in Y direction

Reflection 0.95 0.0-1.0 Reflection strength

ReflectionSamples 4 1-256 Number of rays when ray tracing

ReflectionBlurX 0.1 0.01-1.0 Reflection blur in X direction

ReflectionBlurY 0.3 0.01-1.0 Reflection blur in Y direction

ReflectionName "raytrace" Name for reflection map or
"raytrace" for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection
lookup

ReflectionGroups "" Groups to test for traced reflections

Description

This surface shader simulates brushed or rolled metal.

The shader uses an anisotropic reflection model, in which specular reflectivity depends on the
orientation of the surface with respect to the incoming light.  The surface orientation is determined by
the primitive's tangent vectors.  The X direction corresponds to the tangent vector in the u direction; the
Y direction corresponds to the tangent vector in the v direction.  Only parametric surfaces such as
NURBs, bicubic patches, and bilinear patches have well-defined tangent vectors.  This shader may not
produce reasonable results when applied to subdivision surfaces or polygon meshes.

The SpecularRoughnessX and SpecularRoughnessY parameters control the size of the specular
highlight in the X and Y directions respectively.  Using a different value for X and Y roughness
generates oblong highlights.

Similarly, the ReflectionBlurX and ReflectionBlurY parameters control the shape of blurry reflections;
using a different value for each parameter produces anisotropic reflections.

Normally the ReflectionBlurX and ReflectionBlurY values should be proportional to the RoughnessX
and Roughness Y parameters, respectively, to produce a consistent appearance.  However, the
RoughnessX value does not have to be exactly the same as the ReflectionBlurX parameter, and the
RoughnessY value need not match the ReflectionBlurY value.



AIR User Manual217

© 2001-2014 SiTex Graphics, Inc.

The illumination model is based on "Measuring and Modeling Anisotropic Reflection" by Greg Ward
published in SIGGRAPH '92.

See Also

VBrushedPlastic shader

10.10.37VBrushedPlastic

  brushed plastic surface with reflections

Illumination model:  anisotropic plastic

Features: reflections

Parameter Default Value Range Description

Diffuse 0.45 0.0-1.0 Diffuse reflectivity

Specular 0.1 0.0-1.0 Specular reflectivity

SpecularRoughnessX 0.1 0.01-1.0 Specular roughness in X direction

SpecularRoughnessY 0.25 0.01-1.0 Specular roughness in Y direction

Reflection 0.95 0.0-1.0 Reflection strength

ReflectionSamples 4 1-256 Number of rays when ray tracing

ReflectionBlurX 0.1 0.01-1.0 Reflection blur in X direction

ReflectionBlurY 0.25 0.01-1.0 Reflection blur in Y direction

ReflectionName "raytrace" Name for reflection map or
"raytrace" for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection
lookup

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur



Shader Guide 218

© 2001-2014 SiTex Graphics, Inc.

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

This surface shader simulates the appearance of anisotropic surfaces with a plastic finish such as
painted wood.  The default parameters are based on physical measurements for a semi-gloss latex
paint applied to wood.

The shader uses an anisotropic reflection model, in which specular reflectivity depends on the
orientation of the surface with respect to the incoming light.  The surface orientation is determined by
the primitive's tangent vectors.  The X direction corresponds to the tangent vector in the u direction; the
Y direction corresponds to the tangent vector in the v direction.  Only parametric surfaces such as
NURBs, bicubic patches, and bilinear patches have well-defined tangent vectors.  This shader may not
produce reasonable results when applied to subdivision surfaces or polygon meshes.

The SpecularRoughnessX and SpecularRoughnessY parameters control the size of the specular
highlight in the X and Y directions respectively.  Using a different value for X and Y roughness
generates oblong highlights.

Similarly, the ReflectionBlurX and ReflectionBlurY parameters control the shape of blurry reflections;
using a different value for each parameter produces anisotropic reflections.

Normally the ReflectionBlurX and ReflectionBlurY values should be proportional to the RoughnessX
and Roughness Y parameters, respectively, to produce a consistent appearance.  However, the
RoughnessX value does not have to be exactly the same as the ReflectionBlurX parameter, and the
RoughnessY value need not match the ReflectionBlurY value.

The illumination model is based on "Measuring and Modeling Anisotropic Reflection" by Greg Ward
published in SIGGRAPH '92.

See Also

VBrushedMetal shader

10.10.38VCarPaint

  car paint simulated as a base metal layer with clear overcoat

Illumination Model:  metal and ceramic



AIR User Manual219

© 2001-2014 SiTex Graphics, Inc.

Features: reflections

Parameter Default Value Range Description

Diffuse 0.3 0.0-1.0 Diffuse reflectivity

Specular 0.7 0.0-1.0 Specular reflectivity

SpecularRoughness 0.1 0.01-1.0 Specular roughness

FinishSpecular 0.7 0.0-1.0 specular reflectivity for clear finish
layer

FinishReflection 0.5 0.0-1.0 reflection multiplier for clear finish
layer

FinishSpecularRoughnes
s

0.015 0.01-1.0 surface roughness

FinishSpecularSharpness 0.4 0.0-1.0 sharpness of highlight edge

Flake 0 Flake intensity

FlakeFrequency 1000 Flake frequency

FlakeDensity 0.5 0.0-1.0 Fraction of area covered by flake

FlakeRoughness 0.4 Specular roughness for flakes

FlakeColor 1 1 1 Flake color

Reflection 0.0 0.0-1.0 Reflection strength for base

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or
raytrace for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection
lookup

Description

The VCarPaint surface shader simulates metallic car paint with a clear finish.  The base metal color is
taken from the object's color attribute.  The clear finish adds glossy highlights and reflections
(unmodulated by the base color) to the underlying metal.

Metallic flakes embedded in the paint can be added using the Flake controls.  The flakes are
distributed in texture space, using standard texture coordinates.  They are generated using an
antialiased noise pattern, so small flakes will fade out with distance.

10.10.39VCeramic

  glossy, reflective surface with optional texture maps for color and shininess

Illumination model:  ceramic

Features: reflections, texture maps



Shader Guide 220

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

SpecularSharpness 0.8 0.0-1.0 Sharpness of highlight edge

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VCeramic surface shader simulates a glossy surface with reflections and texture maps for color,
specular, opacity, and bump.  All texture maps use the same set of texture coordinates.

See Also

VShinyTile2D shader



AIR User Manual221

© 2001-2014 SiTex Graphics, Inc.

10.10.40VClay

 surface shader for rough, dusty surfaces such as clay with no specular highlights

Illumination Model:  clay

Features:  texture map

Parameter Default Value Range Description

Diffuse 0.7 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.5 0.0-1.0 Diffuse roughness

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Copies of texture in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VClay surface shader produces the appearance of rough surfaces such as clay.

The base output color is taken from the object's color attribute, which is multiplied by the color map
value if a color map is provided.

See Also

VConcrete shader



Shader Guide 222

© 2001-2014 SiTex Graphics, Inc.

10.10.41VCloth

 surface shader for cloth based on a physical model of woven fabric

Illumination Model: microcylinder

Features:  texture map

Parameter Default Value Range Description

Diffuse 1.0 0.0-1.0 Volume scattering multiplier

Specular 1.0 0.0-1.0 Reflection multiplier

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

WeavePattern 1 1 1 Weave pattern as warp run, warp skip,
weft run

WeaveWarpWidth 1 Warp thread width

WeaveWarpGap 1 Gap between warp threads

WeaveWeftWidth 1 Weft thread width

WeaveWeftGap 1 Gap between weft threads

WarpColor 1 1 1 Color for warp threads

WarpMapName "" Texture map for warp color

WarpIsotropy 0.3 0.0-1.0 Isotropic scattering tendency

WarpShininess 0.08 Shininess

WeftColor 1 1 1 Color for weft threads

WeftMapName "" Texture map for weft color

WeftIsotropy 0.3 0.0-1.0 Isotropic scattering tendency

WeftShininess 0.08 Shininess

ThreadAngle 0 Rotation for thread directions in
degrees

ThreadAngleMap "" Texture map for rotation angle

ThreadAngleMapMultiply 90 Multiplier for texture result

TextureSizeXY 1 1 Copies of texture in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Description:



AIR User Manual223

© 2001-2014 SiTex Graphics, Inc.

The VCloth surface shader provides a physically based shading model for woven cloth based on the
paper "A Practical Microcylinder Appearance Model for Cloth Rendering" by Sadeghi et al.

Thread Directions

Woven cloth is made by interleaving two perpendicular sets of threads or yarns, known as warp and
weft.  VCloth uses the tangent vectors for a surface (which are usually based on the texture
coordinates) as the basis for the thread directions.  By default warp threads follow the tangent in the
direction of the second texture coordinate (Y); weft threads follow the X tangent.  The thread
directions can be rotated using the ThreadAngle parameters.  By setting the ThreadAngle to 90,
you can effectively swap the warp and weft directions.  Rotating the thread directions does not affect
the coordinates used for any texture maps.

Cloth appearance is affected by the type of weave pattern that is used and by the physical properties of
the threads.  This shader allows both sets of properties to be controlled.

Weave Pattern

The weave pattern is taken from the smallest rectangular piece of the cloth that could be tiled to
reproduce the entire cloth.  The shader assumes that this smallest area is much smaller than a pixel,
and the shader returns the average reflectance over that patch.  Individual threads will not be visible.

The WeavePattern parameter gives the pattern as 3 values:

· The length of the visible warp thread, given as the number of weft threads crossed over.
· The number of weft threads to skip before the next warp thread is visible
· The length of the visible weft thread, given as the number of warp threads crossed over.

The rest of the weave definition gives the thread width and the gap between threads in each
direction.  Because the exact pattern is not visible, this is enough information to compute the
reflectance for the simple weave patterns supported by this shader:  simple or plain weave, twill, and
satin.

The weave pattern affects the final appearance in a two ways.  First, it determines how much of each
thread type is visible.  Second, it determines the shape of the threads as they are interwoven, which
affects how light responds to each thread.  The shader automatically estimates the thread profiles
based on the weave pattern.

Here are two sample patterns with the corresponding parameter values (the warp threads are
vertical and blue-green; weft threads are horizontal and orange):

WeavePattern 1 1 1 3 1 1

WeaveWarpWidth 1 1

WeaveWarpGap 1 0.1

WeaveWeftWidth 1 1

WeaveWeftGap 1 1



Shader Guide 224

© 2001-2014 SiTex Graphics, Inc.

Thread Properties

The way thread scatters light is computed as the sum of two functions:  a "diffuse" component
computed as the effect of volume scattering in the thread, and "specular" component for light that is
reflected at the thread surface.

The specular (reflection scattering) behavior of the thread is determined by the thread shape and the
shininess value (WarpShininess or WeftShininess).  Smaller values produce a broader but
dimmer highlight.

The shininess value is also used to determine how light scattered through the thread is emitted.  The
volume scattering is also affected by the isotropy parameter (WarpIsotropy or WeftIsotropy),
which specifies the threads tendency to scatter light in all directions (versus scattering preferentially
along the incoming light direction).

Threads are constructed from cloth fibers in two different ways, and the method of construction
affects the optical properties of the thread.  Staple threads (such as cotton) are made out of twisted
fibers, and they are held together by friction.  Filament threads are made of long straight fibers (such
as silk) with little twist.

Here are some measured values for different thread types from the above cited paper:

Thread Type Isotropy Shininess

Linen (flax) 0.3 .085

Flat silk 0.2 0.2

Twisted silk 0.3 0.22

Flat polyester 0.1 0.4

Twisted polyester 0.7 0.033

See Also:

VClothAdvanced surface shader
VFabric surface shader

10.10.42VClothAdvanced

 surface shader for cloth based on a physical model of woven fabric

Illumination Model: microcylinder

Features:  texture map

Parameter Default Value Range Description

Diffuse 1.0 0.0-1.0 Volume scattering multiplier

Specular 1.0 0.0-1.0 Reflection multiplier



AIR User Manual225

© 2001-2014 SiTex Graphics, Inc.

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

WarpColor 1 1 1 Color for warp threads

WarpMapName "" Texture map for warp color

WarpDiffuseSpread 24 Volume scattering angle in degrees

WarpDiffuseIsotropy 0.3 0.0-1.0 Isotropic scattering tendency

WarpSpecularSprea
d

12 Specular reflectance angle in degrees

WeftColor 1 1 1 Color for weft threads

WeftMapName "" Texture map for weft color

WeftDiffuseSpread 24 Volume scattering angle in degrees

WeftDiffuseIsotropy 0.3 0.0-1.0 Isotropic scattering tendency

WeftSpecularSpread 12 Specular reflectance angle in degrees

ThreadAngle 0 Rotation for thread directions in
degrees

ThreadAngleMap "" Texture map for rotation angle

ThreadAngleMapMultiply 90 Multiplier for texture result

TextureSizeXY 1 1 Copies of texture in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Description:

The VCloth surface shader provides a physically based shading model for woven cloth based on the
paper "A Practical Microcylinder Appearance Model for Cloth Rendering" by Sadeghi et al.

Thread Directions

Woven cloth is made by interleaving two perpendicular sets of threads or yarns, known as warp and
weft.  VCloth uses the tangent vectors for a surface (which are usually based on the texture
coordinates) as the basis for the thread directions.  By default warp threads follow the tangent in the
direction of the second texture coordinate (Y); weft threads follow the X tangent.  The thread
directions can be rotated using the ThreadAngle parameters.  By setting the ThreadAngle to 90,
you can effectively swap the warp and weft directions.  Rotating the thread directions does not affect
the coordinates used for any texture maps.

Cloth appearance is affected by the type of weave pattern that is used and by the physical properties of
the threads.  This shader allows both sets of properties to be controlled.

Weave Pattern

The VClothAdvanced shader provides low-level controls over the thread curves in each direction.
The thread profile is defined as one or more curve segments with the WarpCurve* and
WeftCurve* parameters.  Each curve segment is defined as three values:  start angle, end angle,
and length.  The angles are relative to the tangent direction, with negative angles pointing up and



Shader Guide 226

© 2001-2014 SiTex Graphics, Inc.

positive angles pointing down with respect to the surface normal.  The shading computations return
the length-weighted average response for the set of curves defined for each thread.

For an alternate method of specifying weave curves, see the VCloth shader.

Thread Properties

The way thread scatters light is computed as the sum of two functions:  a "diffuse" component
computed as the effect of volume scattering in the thread, and "specular" component for light that is
reflected at the thread surface.

The specular (reflection scattering) behavior of the thread is determined by the thread shape and the
specular spread value (WarpSpecularSpread or WeftSpecularSpread) which gives an angle in
degrees over which reflected light is scattered.  Larger values produce a broader but dimmer
highlight.

Similarly, the diffuse spread parameter (WarpDiffuseSpread or WeftDiffuseSpread)
determines how light scattered through the thread is emitted.  The volume scattering is also affected
by the isotropy parameter (WarpDiffuseIsotropy or WeftDiffuseIsotropy), which specifies
the threads tendency to scatter light in all directions (versus scattering preferentially along the
incoming light direction).

Threads are constructed from cloth fibers in two different ways, and the method of construction
affects the optical properties of the thread.  Staple threads (such as cotton) are made out of twisted
fibers, and they are held together by friction.  Filament threads are made of long straight fibers (such
as silk) with little twist.

Here are some measured values for different thread types from the above cited paper:

Thread Type IOR Diffuse Spread Diffuse Isotropy Specul
ar

Spread
Linen (flax) 1.46 24 0.3 12

Flat silk 1.35 10 0.2 5

Twisted silk 1.35 32 0.3 18

Flat polyester 1.54 5 0.1 2.5

Twisted polyester 1.54 60 0.7 30

See Also:

VCloth surface shader
VFabric surface shader

10.10.43VCumulusCloud

  cloud surface shader for volumetric primitives

Illumination Model:  particle



AIR User Manual227

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Diffuse 1.0 Diffuse reflectivity

Incandescence 0.0 Self-illumination value

Ambient 0.0 0.0-1.0 Ambient reflectivity

OpacityMultiplier 1.0 Opacity multiplier

PrimaryScatter -0.1 -1 to 1 Primary scattering direction

PrimaryScatterWeight 1.0 0.0-1.0 Relative weight of primary scattering

PrimaryScatterColor 1.0 1.0 1.0 color Per-channel scattering multiplier

SecondScatter 0.0 -1 to 1 second scattering direction

SecondScatterColor 1.0 1.0 1.0 color Per-channel scattering multiplier

PatternSize 0.5 size of cloud pattern

SphereRadius 0.8 radius of soft sphere shape

Turbulence 0.1 turbulence strength

TurbulenceExponent 0.5 exponent for turbulence sharpness

TurbulenceLevels 4 1-9 octaves of fractal noise

TurbulenceRoughness 0.5 relative strength of successive noise
levels

Distortion 0.5 distortion of basic shape

DistortionVector 1 -1 1 distortion direction

ShadingSpace "shader" space space for shading computations

Description

This is a basic cloud shader for cumulus clouds.  The illumination model is the same as that of the
particle shader.

The cloud pattern is based on David Ebert's cumulus cloud model in Chapter 8 of Texturing and
Modeling.  The SphereRadius parameter gives the radius for a soft sphere shape within the volume
primitive.  If SphereRadius is 0,  the soft sphere shape is not used, and the entire volume primitive is
filled with the turbulent cloud pattern.

The basic sphere shape can be modified to look less like a sphere by distorting it along the
DistortionVector using the turbulence result multiplied by the Distortion parameter.

The pattern within the cloud is generated using a turbulence function controlled by the various
Turbulence parameters.  The overall size of the pattern is determined by the PatternSize
parameter.  Both the PatternSize and OpacityMultiplier parameters should be adjusted based
on the scale of volume primitive.

See Also

particle shader
VSmokeSurface shader



Shader Guide 228

© 2001-2014 SiTex Graphics, Inc.

10.10.44VConcrete

  concrete with grooves and color variation

Illumination Model:  clay

Parameter Default Value Range Description

Diffuse 0.8 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.8 0.0-1.0 Diffuse roughness

GrooveDepth 0.01 depth of grooves

GrooveWidth 0.05 Width of grooves in the shading space

GrooveAxis 1 0 0 axis perpendicular to grooves

Splotchiness 1.0 how much color variation to add

SplotchSize 0.2 0.0-1.0 size of color-varying splotches

SplotchColor 0.89 0.89 0.86 color of splotches

ShadingSpace "shader" spaces coordinate space for shading
calculations

Description

The VConcrete surface shader produces the appearance of weathered concrete with grooves.

The base surface color is taken from the object's color attribute, to which splotches are applied
according to the Splotch parameters.

The grooves are oriented perpendicular to the axis defined by GrooveAxis in the ShadingSpace
coordinate system.  For concrete without grooves, set the GrooveDepth parameter to 0.

See Also

VClay shader

10.10.45VDashes

  dashes for curves



AIR User Manual229

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Frequency 10.0 Dashes per unit length in texture space

FirstDash 0.4 0-1 Length of first dash

FirstGap 0.2 0-1 Length of first gap

SecondDash 0.0 0-1 Length of second dash

SecondGap 0.1 0-1 Length of second gap

ThirdDash 0.0 0-1 Length of third dash

Description

The VDashes surface shader makes a curve primitive into a dashed line using the curve's texture
coordinates.  The color of the dashes is taken from the object's color attribute.

Frequency sets the number of dashes per texture coordinate unit.  Other parameters are given as a
fraction of the unit interval.

The pattern can have up to 3 dashes.

10.10.46VDecal2D

  reflective plastic shader with base texture map and up to 3 decals

Illumination model:  plastic

Features: reflections, texture map

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

SpecularSharpness 0.8 0.0-1.0 Sharpness of highlight edge

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur



Shader Guide 230

© 2001-2014 SiTex Graphics, Inc.

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

TopDecalName "" Decal file name

TopDecalOrigin[2] 0 0 Location of top, left decal corner

TopDecalSize[2] 1 1 Width and height of decal

TopDecalColor 1 1 1 Decal color

SecondDecalName "" Decal file name

SecondDecalOrigin[2] 0 0 Location of top, left decal corner

SecondDecalSize[2] 1 1 Width and height of decal

SecondDecalColor 1 1 1 Decal color

ThirdDecalName "" Decal file name

ThirdDecalOrigin[2] 0 0 Location of top, left decal corner

ThirdDecalSize[2] 1 1 Width and height of decal

ThirdDecalColor 1 1 1 Decal color

Description

This plastic shader provides a base texture map with up to 3 decals on top.  The decals and texture
map are positioned using the object's standard texture coordinates.

10.10.47VDecal3D

  reflective plastic shader with base texture map and up to 3 decals



AIR User Manual231

© 2001-2014 SiTex Graphics, Inc.

Illumination model:  plastic

Features: reflections, texture map, projected decals

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

SpecularSharpness 0.8 0.0-1.0 Sharpness of highlight edge

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture corner

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection



Shader Guide 232

© 2001-2014 SiTex Graphics, Inc.

TopDecalName "" Decal file name

TopDecalSpace "world" spaces Coordinate space for projection

TopDecalTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Projective transformation

TopDecalFrontOnly 0 -1, 0, 1 1=front only, -1=back only, 0=both
sides

SecondDecalName "" Decal file name

SecondDecalSpace "world" spaces Coordinate space for projection

SecondDecalTransfor
m

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Projective transformation

SecondDecalFrontOnly 0 -1, 0, 1 1=front only, -1=back only, 0=both
sides

ThirdDecalName "" Decal file name

ThirdDecalSpace "world" spaces Coordinate space for projection

ThirdDecalTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Projective transformation

ThirdDecalFrontOnly 0 -1, 0, 1 1=front only, -1=back only, 0=both
sides

Description

This plastic shader provides a base texture map with up to 3 projected decals on top.

10.10.48Velvet

 velvet surface shader

Illumination Model:  custom

Features:  texture map

Parameter Default Value Range Description

Diffuse 1.0 0.0-1.0 Diffuse reflectivity

BackScatter 0.5 0.0-1.0 Strength of reflection toward the viewer

Edginess 10.0 Strength of scattering at the horizon

Roughness 0.1 0.01-1.0 Specular roughness

SheenColor 1 1 1 Shiny color

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur



AIR User Manual233

© 2001-2014 SiTex Graphics, Inc.

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The Velvet surface shader provides a basic velvet appearance with optional texture map for color.

10.10.49VFabric

  surface shader for cloth with blinn specular and velvet sheen controls

Illumination Model:  custom

Features:  texture map

Parameter Default Value Range Description

Diffuse 0.6 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.8 0.0-1.0 Diffuse roughness

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularSize 0.3 0.0-1.0 Specular highlight size

SpecularRolloff 0.7 Falloff of highlight edge

SpecularColor 1 1 1 Specular color



Shader Guide 234

© 2001-2014 SiTex Graphics, Inc.

Sheen 0.2 0.0-1.0 Sheen intensity

SheenBackscatter 0.2 Tendency to scatter light towards
viewer

SheenEdginess 3 Exponent applied to sheen strength

SheenRoughness 0.4 Sheen roughness

SheenMapName "" Texture map for sheen color/strength

SheenMapBlur 0.0 Texture blur

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Description:

The VFabric surface shader provides a custom illumination model for shading cloth: a combination of
the VClay diffuse model, the VBlinn specular model, and the Velvet shaders' sheen component.

See Also:

VCloth surface shader

10.10.50VFur

surface shader for fur modeled as curves primitives

Illumination Model:  custom

Parameter Default Value Range Description

Ambient 1.0 0.0-1.0 Ambient reflectivity

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.1 0.01-1.0 Specular roughness



AIR User Manual235

© 2001-2014 SiTex Graphics, Inc.

SpecularColor 1 1 1 Highlight color

SpecularStart 0.1 0.0-1.0 Distance from root to start specular

SpecularEnd 1.0 0.0-1.0 Distance from root to end specular

SpecularFadeRegion 0.1 Transition region at specular start
and end

RootColor  0.5 0.5 0.5 Color at base of curve

TipColor 1.0 1.0 1.0 Color at tip of curve

ColorBias 0.5 0.0-1.0 Bias for color interpolation along
curve

N_Srf 0 0 0 Surface normal at base of curve
(provided per-curve in Curves
primitive definition)

Description:

This shader is designed to shade fur generated with Joe Alter's Shave and a Haircut.

The diffuse color is based on the RootColor and TipColor which are linearly interpolated along the
curve's length. The result of that interpolation is then multiplied by the curve's color attribute.

See Also

VHair shader

10.10.51VGlass

  glass shader for thick, solid glass with refraction effects

Illumination model:  custom

Features: reflections



Shader Guide 236

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Specular 1.0 0.0-1.0 Specular reflectivity

SpecularRoughness 0.1 0.0-1.0 Specular roughness

SpecularSharpness 0.8 0.0-1.0 Sharpness of highlight edge

SpecularColor 1.0 1.0 1.0 Color of specular highlight

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionMaxLevel 1 1-20 Max level of interreflection

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ReflectionGroups "" Groups to test for traced reflections

IndexOfRefraction 1.5 0.1-10.0 Index of refraction

Transmission 1.0 0.0-1.0 Multiplier for transmitted/refracted light

TransmissionColor 1.0 1.0 1.0 Color for transmitted rays

TransmissionSample
s

1 1-256 Number of rays for refraction

TransmissionBlur 0.0 0.0-1.0 Blur for transmission

TransmissionMaxLev
el

6 1-20 Max level for refracted rays

Description

The VGlass surface shader simulates thick transparent glass including the effects of refraction.

By altering the IndexOfRefraction, this shader can also be used simulate other transparent
refractive materials such as water or diamond.

For thin glass objects modeled as a single surface (such as a window modeled as a single polygon),
use the VThinGlass shader instead.

10.10.52VGradient

 surface shader with color gradient

Illumination model:  general

Features: reflections



AIR User Manual237

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.0 0.0-1.0 Diffuse roughness

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

SpecularSharpness 0 0-1 Specular sharpness

Metallic 0 0 or 1 When 1, use metallic illumination
model

Reflection 0.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

Incandescence 0 constant emitted intensity

StartColor 1 1 1 Color at start location

StartColorBlend 0.5 0-1 Mix ratio with color attribute

StartAlpha 1 0-1 Alpha at start location

StartXY 0 0 Texture coordinates for start location

EndColor 0 0 0 Color at end location

EndColorBlend 0.5 0-1 Mix ratio with color attribute

EndAlpha 1 0-1 Alpha at end location

EndXY 0 1 Texture coordinates of end location

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VGradient surface shader computes a gradient color pattern using 2D coordinates.

10.10.53VGranite

  granite

Illumination model:  plastic



Shader Guide 238

© 2001-2014 SiTex Graphics, Inc.

Features: reflections

Parameter Default Value Range Description

Diffuse 0.8 0.0-1.0 Diffuse reflectivity

Specular 0.2 0.0-1.0 Specular reflectivity

SpecularRoughness 0.1 0.0-1.0 Specular roughness

Reflection 0.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or
raytrace for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection
lookup

PatternSize 0.05 Size or scale of pattern

PatternOrigin 0 0 0 Pattern origin

PatternSpace "shader" spaces Coordinate space for shading
calculations

VeinFraction 0.45 0.0-1.0 Fraction that is vein color

VeinFuzz 0.3 0.0-1.0 Blur for transition region

VeinColor 0 0 0 Vein color

VeinLevelsOfDetail 4 1-7 Levels of detail in pattern

VeinRoughness 0.5 0.0-1.0 How much each level adds to the
pattern

VeinFilterWidth 0.25 0.0-4.0 Filter width multiplier

Description

The VGranite shader simulates a granite-like material with optional reflections.

10.10.54VGrid2D

  2D grid of lines on plastic

Illumination Model:  plastic

Parameter Default Value Range Description

Ambient 1.0 0.0-1.0 Ambient reflectivity

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

Roughness 0.1 0.01-1.0 Specular roughness



AIR User Manual239

© 2001-2014 SiTex Graphics, Inc.

LineSpacing 0.1 Distance between line centers

LineWidth 0.01 Line width

LineColor 0 0 0 Line color

ProjectionType "st" projections Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

Transformation 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description:

The VGrid2D surface shader generates an anti-aliased 2-dimensional line grid on a plastic surface.

10.10.55VHair

  surface shader to make curves look like hair

Illumination Model:  custom

Parameter Default Value Range Description

Ambient 1.0 0.0-1.0 Ambient reflectivity

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

Roughness 0.1 0.01-1.0 Specular roughness

SpecularColor 1 1 1 Highlight color

RootColor  0.5 0.5 0.5 Color at base of curve

TipColor 1.0 1.0 1.0 Color at tip of curve

ColorBias 0.5 0.0-1.0 Bias for color interpolation along curve

Description:

This shader makes a flat curve look like hair by illuminating it as though it were a cylinder.

The diffuse color is based on the RootColor and TipColor which are linearly interpolated along the
curve's length. The result of that interpolation is then multiplied by the curve's color attribute.

See Also

VFur shader

10.10.56VHexTile

 hexagonal ceramic tile with reflections



Shader Guide 240

© 2001-2014 SiTex Graphics, Inc.

Illumination model:  ceramic

Features: reflections

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.1 0.0-1.0 Specular roughness

SpecularSharpnes
s

0.8 0.0-1.0 Sharpness of highlight edge

Reflection 0.5 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

TileWidth 0.1 Width of tile

TileBlur 0.04 Blur for antialiasing tile edges

TileColorVary 0.3 0.0-1.0 Color variation tile-to-tile

MortarWidthFractio
n

0.1 Mortar width as a fraction of tile size

MortarColor .1 .1 .1 Mortar color

MortarDepth .1 Groove depth

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VHexTile shader produces a 2D pattern of ceramic hexagonal tiles.

See Also

VCeramic surface shader
VBrick2D surface shader
VShinyTile2D surface shader



AIR User Manual241

© 2001-2014 SiTex Graphics, Inc.

10.10.57VLayeredMaterials

  surface shader with base material and 3 layers of different materials

Illumination model:  plastic or metal

Features: reflections, textures, bump mapping

Parameter Default Value Range Description

Diffuse 0.7 0.0-1.0 Diffuse reflectivity

DiffuseMap "" Diffuse color map

DiffuseSizeXY 1 1 Size of texture map in X and Y

DiffuseOriginXY 0 0 Map position of left, top corner

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness/size

SpecularSharpness 0.0 Sharpness of highlight edge

SpecularMetallic 0 0, 1 Whether surface is metallic

SpecularMap "" Specular color map

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

BumpMax 0.0 Maximum bump height

BumpMap "" Texture map for bump mapping

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

aMask "" Texture map for layer mask

aMaskSizeXY 1 1 Size of mask in X and Y

aMaskOriginXY 0 0 Position of top, left corner of mask



Shader Guide 242

© 2001-2014 SiTex Graphics, Inc.

aDiffuse 0.7 0.0-1.0 Diffuse reflectivity

aDiffuseColor 1 1 1 Diffuse color

aDiffuseColorMap "" Diffuse color map

aDiffuseSizeXY 1 1 Size of texture map in X and Y

aDiffuseOriginXY 0 0 Map position of left, top corner

aSpecular 0.5 0.0-1.0 Specular reflectivity

aSpecularRoughness 0.2 0.0-1.0 Specular roughness/size

aSpecularSharpness 0.0 Sharpness of highlight edge

aSpecularMetallic 0 0, 1 Whether surface is metallic

aSpecularMap "" Specular color map

aReflection 1.0 0.0-1.0 Reflection strength

aReflectionBlur 0.0 0.0-1.0 Blur for reflections

aBumpMax 0.0 Maximum bump height

aBumpMap "" Texture map for bump mapping

Two more layers - b and c - with parameters identical to layer a parameters.

Description

The VLayeredMaterials shader allows multiple materials to be applied to the same surface.  The
shader has a base material and up to 3 layer materials whose coverage can be controlled with a
texture mask.

All textures and masks share the same underlying 2D coordinate system specified with the
Projection, ProjectionSpace, and ProjectionTransform parameters.

10.10.58VLeather

 surface shader for leather with procedural cracks and wrinkles

Illumination model:  plastic with Blinn specular

Features: reflections, procedural bump pattern



AIR User Manual243

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Diffuse 0.6 0.0-1.0 Diffuse reflectivity

Specular 0.4 0.0-1.0 Specular reflectivity

SpecularSize 0.5 0.0-1.0 Specular size (Blinn eccentricity)

SpecularRolloff 0.4 Blinn rolloff parameter

Reflection 0.3 0.0-1.0 Reflection strength

ReflectionSamples 4 1-256 Number of rays when ray tracing

ReflectionBlur 0.1 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

BumpMax 0.1 Max bump amplitude

BumpSpace "shader" space for bump amplitude

CrackWidth 0.2 Crack width (relative to PatternSize)

CrackDepth 0.05 Crack depth (relative to BumpMax)

CrackDistortion 1 0-1 Crack pattern deviation from a regular
grid

CrackCoverage 0.5 0-1 Fraction of surface covered by cracks

CrackCoverageFreq
uency

0.2 Coverage variation frequency (relative
to PatternSize)

CrackColor 0 0 0 Crack color

CrackColorBlend 0.2 0-1 Amount of crack color to blend into
base color in cracks

WrinkleFrequency 0.05 Wrinkle frequency (relative to
PatternSize)

WrinkleDepth 0.9 Wrinkle depth (relative to BumpMax)

PatternSize 0.05 Overall pattern size

PatternOrigin 0 0 0 Pattern offset

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VLeather surface shader simulates the appearance of leather using a fine-grain pattern of cracks
combined with a larger patterns of wrinkles.

The overall size of the patterns is set by PatternSize, and the depths of cracks and wrinkles can both
be scaled using BumpMax.

10.10.59VLines

  line-drawing surface shader



Shader Guide 244

© 2001-2014 SiTex Graphics, Inc.

Parameter Default value Range Description

BlackThreshold 0.0 Diffuse level below which surfaces are
shaded with full line coverage

WhiteThreshold 1.0 Diffuse level above which lines are
invisible

Background 1 1 1 Explicit background color

BackgroundBlend 0 0.0-1.0 Blend between explict background color
and object color

FirstFrequency 400 Stripe frequency

FirstFraction 0.3 Fraction of stripe covered by line

FirstAlpha 1 0.0-1.0 Line coverage (0=no lines)

FirstAngle 0 0-360 Rotation angle in degrees for lines

FirstColor 0 0 0 Explicit line color

FirstColorBlend 1.0 0.0-1.0 Blend between explicit line color and
object color

SecondFrequency 400 Stripe frequency

SecondFraction 0.3 Fraction of stripe covered by line

SecondAlpha 1 0.0-1.0 Line coverage (0=no lines)

SecondAngle 0 0-360 Rotation angle in degrees for lines

SecondColor 0 0 0 Explicit line color

SecondColorBlend 1.0 0.0-1.0 Blend between explicit line color and
object color

Description

Use the VLines shader to shade a surface by filling it with parallel lines.  Up to two non-parallel sets of
lines are supported.

Colors for the background and lines can be explicitly specified or based on the object's color attribute.

10.10.60VMarble

  layered marble with reflections

Illumination model:  plastic

Features: reflections



AIR User Manual245

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Diffuse 0.7 0.0-1.0 Diffuse reflectivity

Specular 0.3 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.1 0.0-1.0 Specular roughness

Reflection 0.5 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

VeinColor 0.0 0.0 0.2 Color of marble veins

VeinSharpness 0.5 0.0-1.0 Contrast adjustment

VeinFraction 0.5 0.0-1.0 Fraction of layer that is vein color

VeinTurbulence 1.0 0.0-3.0 Amount of turbulence to apply

VeinFIlterWidth 1 Filter width multiplier for antialiasing

PatternSize 0.4 Width of one layer of marble

PatternOrigin 0 0 0 Pattern position

PatternAxis 1 0 0 Axis perpendicular to marble layers

PatternSpace "shader" spaces Coordinate space for shading
calculations

Description

The VMarble shader simulates a marble-pattern material with reflections.

The size or scale of the marble pattern is set with the PatternSize parameter.  The marble is
modeled as alternating layers of a base substrate, whose color is taken from the primitive's color
attribute, and a vein layer whose color is set by the VeinColor parameter.  VeinFraction gives the
fraction of each pair of layers that is the vein color.  The layers are oriented perpendicular to the
PatternAxis.

VeinSharpness determines the sharpness of the edge between the colored vein and the base
material:

0.4 0.5 0.6

VeinTurbulence controls the how much the marble is distorted by a simulated turbulent flow:



Shader Guide 246

© 2001-2014 SiTex Graphics, Inc.

0.5 1.0 1.5

This shader performs anti-aliasing by fading out the marble pattern as the region being shaded grows
large.  Lower VeinFilterWidth values allow more detail to appear, but the additional detail may
cause aliasing in animation.

10.10.61VMetal

  metal shader with reflections and color texture map

Illumination model:  metal

Features:  texture map, reflections

Parameter Default Value Range Description

Diffuse 0.05 0.0-1.0 Diffuse reflectivity

Specular 0.95 0.0-1.0 Specular reflectivity

SpecularRoughness 0.1 0.0-1.0 Specular roughness

Reflection 0.95 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ReflectionGroups "" Groups to test for traced reflections

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur



AIR User Manual247

© 2001-2014 SiTex Graphics, Inc.

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VMetal shader provides a basic metallic appearance with reflections and optional texture map
controlling the base metal color.

The base metal color is taken from the object's color attribute, multiplied by the color texture map if
present.

See Also

VRustyMetal shader

10.10.62VPhong

  plastic surface using the Phong specular model

Illumination model:  diffuse plus Phong highlight

Features: reflections, texture map

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.1 0.0-1.0 Specular roughness

SpecularSize 1 Size control for Phong highlight

Reflection 0.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup



Shader Guide 248

© 2001-2014 SiTex Graphics, Inc.

TextureSizeXY 1 1 Size of texture map in X and Y

TextureOriginXY 0 0 Position of left, top corner

TextureAngle 0.0 Rotation angle in degrees

ColorMapName "" Color map name

ColorMapBlur 0.0 0.0-1.0 Color map blur

SpecularMapName "" Specular map name

SpecularMapBlur 0.0 0.0-1.0 Specular map blur

OpacityMapName "" Opacity map name

OpacityMapBlur 0.0 0.0-1.0 Opacity map blur

BumpMax 0.0 Bump amplitude multiplier

BumpSpace "shader" space in which to measure
displacement

BumpMapName "" Bump map name

BumpMapBlur 0.0 0.0-1.0 Bump map blur

Projection "st" projections Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

Transform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

This shader produces a reflective plastic surface with separate texture maps to control the surface
color, opacity and specularity or shininess. An additional texture map is provided for bump mapping. All
maps use the same texture coordinates.

10.10.63VPhysicalMetal

  physically plausible metal shader with texture maps

Illumination model: physical metal

Features:  texture map, reflections



AIR User Manual249

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Reflectance 0.9 0.0-1.0 Specular reflectivity

Roughness 0.03 0.0-1.0 Specular roughness

Samples 8 1-256 Number of rays when ray tracing

IndexOfRefraction 0.37 Index of refraction

Absorption 2.8 Absorption

ColorMapName "" Texture map for base color

OpacityMapName "" Texture map for opacity

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

This surface shader provides a physically plausible metallic appearance with optional color and opacity
maps.

The metal's color is taken from the standard color attribute.  The Reflectance parameter scales the
result for both specular highlights and reflections.  Roughness controls the blurriness of reflections and
the size of specular highlights - larger values produce blurrier reflections and larger highlights.
Samples gives the number of rays to trace for reflections.  For larger Roughness values, more
samples may be needed to produce a smooth result.

See Also

SimpleMetal surface shader
VMetal surface shader

10.10.64VPhysicalPlastic

 physically plausible plastic with texture maps

Illumination model:  plastic



Shader Guide 250

© 2001-2014 SiTex Graphics, Inc.

Features: reflections, texture map

Parameter Default Value Range Description

Diffuse 1 0.0-1.0 Diffuse reflectivity

Specular 1.0 0.0-1.0 Specular and reflection multiplier

Roughness 0.03 0.0-1.0 Specular roughness

ReflectionSamples 4 1-256 Number of rays when ray tracing

TextureSizeXY 1 1 Size of texture map in X and Y

TextureOriginXY 0 0 Position of left, top corner

TextureAngle 0.0 Rotation angle in degrees

ColorMapName "" Color map name

SpecularMapName "" Specular map name

OpacityMapName "" Opacity map name

BumpMax 0.0 Bump amplitude multiplier

BumpSpace "shader" space in which to measure
displacement

BumpMapName "" Bump map name

Projection "st" projections Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

Transform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

This surface shader provides a physically plausible plastic or dielectric material.  The base color is
taken from the standard color attribute.  The Specular parameter scales the result for both specular
highlights and reflections.  Roughness controls the blurriness of reflections and the size of specular
highlights - larger values produce blurrier reflections and larger highlights.  Samples gives the number
of rays to trace for reflections.  For larger Roughness values, more samples may be needed to
produce a smooth result.

See Also

SimplePlastic surface shader
VPlastic surface shader

10.10.65VPlanks

  wooden planks



AIR User Manual251

© 2001-2014 SiTex Graphics, Inc.

Illumination model:  plastic

Features:  reflections

Parameter Default Value Range Description

Diffuse 0.8 0.0-1.0 Diffuse reflectivity

Specular 0.2 0.0-1.0 Specular reflectivity

SpecularRoughness 0.05 0.0-1.0 Specular roughness

Reflection 0.4 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or
raytrace for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection
lookup

PlankWidth 0.05 Plank width

PlankHeight 0.8 Plank height

PlankVaryColor 0.3 Per-plank color variation

WoodColor 0.68 0.32 0.12 Color of base wood

VeinColor 0.08 0.05 0.01 Color of dark wood vein

GrooveColor 0.03 0.01 0.01 Color of groove between planks

GrooveWidth 0.001 Width of grooves between planks

GrooveHeight 0.001 Depth of grooves between planks

RingScale 22 Number of rings per unit

GrainFrequency 44 Frequency of the fine grain

GrainFilterWidth 0.25 Filter width multiplier

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description:

The VPlanks surface shader produces a pattern of wooden planks useful for rendering wood flooring
or paneling.



Shader Guide 252

© 2001-2014 SiTex Graphics, Inc.

10.10.66VPlastic

  reflective plastic surface with texture maps for color, opacity, specular and bump

Illumination model:  plastic

Features: reflections, texture map

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.2 0.0-1.0 Specular roughness

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

TextureSizeXY 1 1 Size of texture map in X and Y

TextureOriginXY 0 0 Position of left, top corner

TextureAngle 0.0 Rotation angle in degrees

ColorMapName "" Color map name

ColorMapBlur 0.0 0.0-1.0 Color map blur

SpecularMapName "" Specular map name

SpecularMapBlur 0.0 0.0-1.0 Specular map blur

OpacityMapName "" Opacity map name

OpacityMapBlur 0.0 0.0-1.0 Opacity map blur

BumpMax 0.0 Bump amplitude multiplier

BumpSpace "shader" space in which to measure
displacement

BumpMapName "" Bump map name

BumpMapBlur 0.0 0.0-1.0 Bump map blur

Projection "st" projections Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

Transform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection



AIR User Manual253

© 2001-2014 SiTex Graphics, Inc.

Description

This shader produces a reflective plastic surface with separate texture maps to control the surface
color, opacity and specularity or shininess. An additional texture map is provided for bump mapping. All
maps use the same texture coordinates.

See Also

V2SidedPlastic shader
VDecal2DPlastic shader
VDecal3DPlastic shader

10.10.67VRubber

 rubber

Illumination model:  rough matte with specular

Features: texture maps

Parameter Default Value Range Description

Diffuse 0.6 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.8 0.0-1.0 Diffuse roughness

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

SpecularMapName "" Texture map for specular color

SpecularMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur



Shader Guide 254

© 2001-2014 SiTex Graphics, Inc.

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description:

Rubber appearance as a rough matte surface with soft specular highlights.

10.10.68VRustyMetal

  metal with rust spots

Illumination model:  metal

Features: reflections

Parameter Default Value Range Description

Diffuse 0 0.0-1.0 Diffuse reflectivity

Specular 0.98 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

Rustiness 0.5 How rusty the surface is

RustColor 0.27 0.05 0.03 Base rust color

RustColorVaryHSV 0.15 0.1 0.1 Variation in rust hue, saturation, and
value

PatternSize 0.2 Overall pattern size

PatternOrigin 0 0 0 Pattern offset

PatternSpace "shader" spaces Coordinate space for shading
calculations



AIR User Manual255

© 2001-2014 SiTex Graphics, Inc.

Description

The VRustyMetal surface shader simulates a metallic surface partially covered with rust.  Rust-covered
regions do not have specular highlights or reflections.

Rustiness gives the approximate fraction of the surface covered with rust.

See Also

VMetal shader

10.10.69VScreen

  plastic or metallic surface with round or square holes

Illumination model:  plastic or metal

Features: reflections

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

Metallic 0 0, 1 0 for plastic, 1 for metal

HoleSizeXY 0.7 0.7 Hole size in X and Y

Round 0.5 0.0-1.0 0 to 1 value transitioning from a
rectangle to an ellipse

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection



Shader Guide 256

© 2001-2014 SiTex Graphics, Inc.

Description

This surface shader produces a pattern of holes on a plastic or metallic surface.  The hole pattern uses
the primitive's standard texture coordinates.

10.10.70VShadeCarpet

 companion surface shader for the instCarpet instancer shader

Parameter Default Value Range Description

Diffuse 1 0.0-1.0 Diffuse reflectivity

Specular 0 0.0-1.0 Specular multiplier

SpecularRoughnes
s

0.2 0.0-1.0 Specular roughness

ShadeLikeCylinder 1 0 or 1 Whether to shade each curve as if it
were a cylinder

FiberBounceLight 0.3 Indirect light bouncing from nearby
carpet strands

ColorMapName "" Color map name

ColorMapBlur 0 Color map blur

OpacityMapName "" Opacity map name

OpacityMapBlur 0.0 Opacity map blur

TextureRepeatX 1 Texture copies in the X direction

TextureRepeatY 1 Texture copies in the Y direction

TextureOriginX 0 Texture origin in X

TextureOriginY 0 Texture origin in Y

See Also

instCarpet instancer shader

10.10.71VShadowedConstant

  constant-colored shader with shadows and optional texture map and reflections

Features: texture map, shadows, reflections



AIR User Manual257

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Intensity 1.0 0.0-1.0 Color brightness multiplier

ShadowIntensity 1.0 0.0-1.0 Multiplier for shadow value

ShadowColor 0.0 0.0 0.0 Shadow color modifier

ColorMapName "" Texture name

ColorMapBlur 0.0 0.0-1.0 Texture blur

TextureRepeatX 1 Copies of texture in X direction

TextureRepeatY 1 Copies of texture in Y direction

TextureOriginX 0.0 Location of left texture edge

TextureOriginY 0.0 Location of top texture edge

TextureProjection "st" projections Projection to use for 2D coordinates

TextureSpace "shader" spaces Coordinate space for projection

TextureTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Reflection 0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

Description

The VShadowedConstant shader produces a constant-colored surface with shadows. This shader only
works properly with lights that have a __unshadowed_Cl output variable.  All AIR light shaders, as
well as the light shaders included with MayaMan and RhinoMan provide this variable.

10.10.72VShadowedTransparent

renders a shadow value into the alpha channel for compositing over a background image

Parameter Default Value Range Description

ShadowIntensity 1.0 0.0-1.0 Shadow multiplier

10.10.73VShinyTile2D

  ceramic tile with reflections



Shader Guide 258

© 2001-2014 SiTex Graphics, Inc.

Illumination model:  ceramic

Features: reflections

Parameter Default Value Range Description

Diffuse 0.6 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.3 Diffuse roughness

Specular 0.4 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.1 0.0-1.0 Specular roughness

SpecularSharpnes
s

0.8 0.0-1.0 Sharpness of highlight edge

Reflection 0.8 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

TileSize 0.1 0.1 Width of tile

TileStagger 0.0 Fraction to offset every other row of
tiles

TileColorVary 0.1 0.0-1.0 Color variation tile-to-tile

GrooveWidth 0.005 Width of grooves between tiles

GrooveDepth 0.01 Depth of groove between tiles

GrooveColor 0.91 0.91 0.91 Groove color

BumpHeight 0.0 Maximum bump height

BumpWidth 0.01 Average size of noisy bumps

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VShinyTile2D shader produces a 2D pattern of ceramic tiles.

See Also



AIR User Manual259

© 2001-2014 SiTex Graphics, Inc.

VCeramic shader
VBrick2D shader

10.10.74VSketchOutline

  surface shader producing uneven, "sketch" outlines when used with AIR's outline capability

Parameter Default Value Range Description

Diffuse 0.0 0.0-1.0 Diffuse reflectivity

DiffuseRoughness 0.0 0.0-1.0 Diffuse roughness

Specular 0.0 0.0-1.0 Specular reflectivity

SpecularRoughness 0.4 0.0-1.0 Specular roughness

Incandescence 1.0 0.0-1.0 Self-illumination

PatternSize 10.0 Size of random pattern

PatternSpace "raster" spaces Coordinate space for pattern

LineWidthMax 2.0 Maximum line width in pixels

LineWidthMin 0.0 Minimum line width in pixels

LineWidthBias 0.5 0.0-1.0 Bias for line width change

LineWidthSharpness 0.5 0.0-1.0 Contrast control for line width change

Description

This shader generates randomly varying line widths for objects rendered with AIR's outline capability.

Outlining must be enabled with the maximum line width option set appropriately for this shader to
function properly.

By default the shader produces a constant shaded surface with outlines.  Set the Incandescence
parameter to 0 and increase Diffuse and Specular to obtain a standard matte or plastic illumination
model.

See Also

Outlines for illustration

10.10.75VSkin

  skin shader with subsurface scattering and optional texture map

Illumination model:  custom



Shader Guide 260

© 2001-2014 SiTex Graphics, Inc.

Features: subsurface scattering, texture map

Parameter Default Value Range Description

Ambient 1.0 0.0-1.0 Ambient reflectivity

SingleScatter 1.0 Strength of single scattering

MultipleScatter 1.0 0.0-1.0 Strength of subsurface scattering

Sheen 1.0 0.0-1.0 Sheen strength

SheenColor 1 1 1 Sheen color

ScatterDistanceScale 0.1 Multiplier for ScatterDistance

ScatterDistance 4.82 1.69 1.09 Average scatter distance for r g b

SubsurfaceReflectance 0.63 0.44 0.34 Diffuse reflectance

SampleDistanceOverrid
e

-1 Maximum distance between subsurface
samples (-1 for default)

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VSkin shader models the apperance of human skin including subsurface scattering with an
optional texture map for detail.

The skin illumination model has three distinct components:

· A single scattering component due to light that enters the skin and is then reflected.
· A multiple scattering component simuluating light that enters the skin, bounces around, and then

exits.
· A sheen component simulating the shininess of the skin.

All Single scatter Multiple scatter Sheen



AIR User Manual261

© 2001-2014 SiTex Graphics, Inc.

Single Scattering

The SingleScatter parameter sets the strength of the single scattering component.  This
component is also influenced by the SkinThickness parameter, which should be appropriate for the
scale of the model.  Larger values of SkinThickness produce a brighter single scattering
component.

0.25 1.0

Multiple Scattering

The multiple scattering component is computed using AIR's subsurface scattering capability.  When a
subsurface scattering object is first encountered, AIR calculates and stores a set of shaded points
distributed over the object's surface. You may notice a delay as AIR performs these computations.
After the point cache is generated, rendering should proceed relatively quickly.

To use subsurface scattering, assign the same point set handle to all primitives that are part of the
current shading object with, for example:

Attribute "pointset"
  "string handle" "head.pts"

AIR shades points in the point cache from the "outside" of the object as determined by the current
orientation.  If your object looks unlit with subsurface scattering, try reversing the orientation of the
object.

The ScatterDistance and SubsurfaceReflectance parameters are set to values appropriate
for human skin.  The ScatterDistance parameter is in units of millimeters; use the
ScatterDistanceScale parameter to scale the scatter distance to an appropriate distance for the
size of your model.  Larger values of ScatterDistanceScale produce more blur and generally take
less time to render:

0.4 1.0 3.0

Sheen

The Sheen parameter controls the specular component of the skin model.



Shader Guide 262

© 2001-2014 SiTex Graphics, Inc.

Base Color

The base color is taken from the object's color attribute, multiplied by the texture map color if any.

Tip

When tweaking parameters for this shader it may be helpful to work on one component at a time by
setting the strength of the other components to 0.  For example, setting the SingleScatter and
Sheen parameters to 0 will allow you to view the results of only the multiple scattering component.

The skin model is based on Matt Pharr's talk at SIGGRAPH 2001.

See Also

Subsurface scattering
VTranslucent shader

10.10.76VSmokeSurface

  smoke surface shader for volumetric primitives

Illumination Model:  particle

Parameter Default Value Range Description

Diffuse 1.0 Diffuse reflectivity

Incandescence 0.0 Self-illumination value

Ambient 0.0 0.0-1.0 Ambient reflectivity

OpacityMultiplier 1.0 Opacity multiplier

PrimaryScatter 0.0 -1 to 1 Primary scattering direction

PrimaryScatterWeight 1.0 0.0-1.0 Relative weight of primary scattering

PrimaryScatterColor 1.0 1.0 1.0 color Per-channel scattering multiplier

SecondScatter 0.0 -1 to 1 second scattering direction

SecondScatterColor 1.0 1.0 1.0 color Per-channel scattering multiplier

PatternSize 0.5 size of smoke pattern

SmokeStrength 1.0 smoke variation

SmokeLevels 3 1-9 octaves of fractal noise

SmokeRoughness 0.5 relative strength of successive noise
levels

ShadingSpace "shader" space space for shading computations

Description

This shader produces a smoke-like pattern using Brownian noise when applied to a volume primitive.
The illumination model is the same as that of the particle shader.  See that shader's documentation for



AIR User Manual263

© 2001-2014 SiTex Graphics, Inc.

details on the illumination parameters.

See also

particle surface shader
VCumulusCloud surface shader
volume primitives

10.10.77VTexturedConstant

  constant-colored surface with texture map

Features: texture map

Parameter Default value Range Description

Incandescence 1.0 Multiplier for constant color

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Copies of texture in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VTexturedConstant surface shader produces a constant-colored surface using a texture map.

See Also

VShadowedConstant shader
constant shader

10.10.78VThinGlass

  shader for thin glass without refraction



Shader Guide 264

© 2001-2014 SiTex Graphics, Inc.

Illumination model:  custom

Features: reflections

Parameter Default Value Range Description

Ambient 0.01 0.0-1.0 Ambient reflectivity

Diffuse 0.01 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.1 0.0-1.0 Specular roughness

SpecularSharpnes
s

0.8 0.0-1.0 Sharpness of highlight edge

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

IndexOfRefraction 1.5 Index of refraction

Transmission 1.0 0.0-1.0 Fraction of light transmitted through the
glass

Description

The VThinGlass surface shader is intended for glass surfaces modeled as a single surface in which
the effects of refraction are not noticable.

See Also

VGlass shader for thick glass with refraction effects

10.10.79VTone

 surface shader for illustration

Illumination model: custom



AIR User Manual265

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Diffuse 1 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughness 0.2 0.0-1.0 Specular roughness

SpecularSharpness 0.8 Specular sharpness

CoolDiffuse 0.2 Amount of base color to add to cool

CoolColor 0 0 .4 Cool diffuse color

WarmDiffuse 0.5 Amount of base color to add to warm

WarmDiffuseColor 0.3 0.3 0 Warm diffuse color

Description

This surface shader implements the lighting model described in  the paper "A Non-Photorealistic
Lighting Model for Automatic Technical Illustration" by Gooch et al.

The illumination model shades objects based on the cosine of the angle between the light ray and the
surface normal.  Surfaces facing completely away from the light are shaded the CoolColor.  A surface
facing the light is shaded the WarmColor.  Orientations in between smoothly blend between the two
colors.

The CoolDiffuse and WarmDiffuse parameters control how much of the base surface color is added
into the cool and warm colors, allowing objects to retain some of their original color in the technical
illustration.

10.10.80VToon

  cartoon shader

Illumination model:  custom

Features: reflections, texture map



Shader Guide 266

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Ambient 1.0 0.0-1.0 Ambient reflectivity

Diffuse 1.0 0.0-1.0 Diffuse reflectivity

DiffuseThreshold 0 -1.0 to 1.0 Cosine of angle for transition from lit to
unlit

DiffuseSharpness 0.9 0.0-1.0 Sharpness of transition from lit to unlit

DiffuseLevels 2 1-9 Number of diffuse shading regions

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularSharpnes
s

0.9 0.0-1.0 Sharpness of highlight edge

SpecularRoughnes
s

0.1 0.0-1.0 Specular roughness

Reflection 0.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Copies of texture in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VToon surface shader provides a basic cartoon shader with optional texture map.

10.10.81VTranslucent

  translucent shader using subsurface scattering with optional texture map



AIR User Manual267

© 2001-2014 SiTex Graphics, Inc.

Illumination model:  custom

Features:  subsurface scattering, reflections, texture map

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.2 0.0-1.0 Specular roughness

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ScatterDistanceSc
ale

0.3 Multiplier for ScatterDistance

ScatterDistance 1.0 1.0 1.0 Average scatter distance for r g b

SubsurfReflectanc
e

0.9 0.9 0.9 Diffuse reflectance

IndexOfRefraction 1.3 Index of refraction

SampleDistanceOv
erride

-1 Maximum distance between
subsurface samples, or -1 for default

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VTranslucent surface shader simulates translucent surfaces using subsurface scattering with
optional texture map.

When a subsurface scattering object is first encountered, AIR calculates and stores a set of shaded
points distributed over the object's surface. You may notice a delay as AIR performs these
computations.  After the point cache is generated, rendering should proceed relatively quickly.



Shader Guide 268

© 2001-2014 SiTex Graphics, Inc.

To use subsurface scattering, assign the same point set handle to all primitives that are part of the
current shading object with, for example:

Attribute "pointset"
  "string handle" "head.pts"

AIR shades points in the point cache from the "outside" of the object as determined by the current
orientation.  If your object looks unlit with subsurface scattering, try reversing the orientation of the
object.

Use the ScatterDistance parameter to define the scatter properties for a particular type of material,
e.g., skin.  A table of real-world values can be found in Jensen et al "A Practical Model for Subsurface
Light Transport" in the SIGGRAPH 2001 Proceedings.

The default scatter distances in the shaders provided with AIR are all in units of millimeters.  Use the
ScatterDistanceScale parameter to adjust the distance to the scale of your object.  Larger
distances produce more blur and generally take less time to render.

The SubsurfReflectance parameter sets the nominal reflectance for subsurface scattering.  Real-
world values can be found in Jensen et al.  Although it is possible to control the color of an object by
changing this parameter, the net effect in interaction with the scattering distance parameter can be
difficult to predict.  Instead, use the primitive's color attribute or a texture map to set the base color,
with the SubsurfReflectance value set for a particular material type.

Base Color

The base color is taken from the object's color attribute, multiplied by the texture map color if any.

See Also

Subsurface scattering
VSkin shader

10.10.82VTranslucentMarble

  marble with subsurface scattering

Illumination model: custom

Features:  subsurface scattering, reflections



AIR User Manual269

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

Ambient 1.0 0.0-1.0 Ambient reflectivity

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

Roughness 0.2 0.0-1.0 Specular roughness

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

ScatterDistanceSc
ale

0.3 Multiplier for ScatterDistance

ScatterDistance 1.0 1.0 1.0 Average scatter distance for r g b

SubsurfReflectanc
e

0.9 0.9 0.9 Diffuse reflectance

IndexOfRefraction 1.3 Index of refraction

SampleDistanceOv
erride

-1 Maximum distance between
subsurface samples, or -1 for default

MarblePatternSize 0.4 Size of one marble layer

MarbleVeinColor 0.0 0.0 0.2 Color of marble veins

MarbleSharpness 0.5 0.0-1.0 Sharpness of transition

MarbleVeinFraction 0.4 0.0-1.0 Vein fraction of each layer

MarbleTurbulence 0.5 Amount of turbulence to apply

MarbleAxis[3] 1 0 0 Axis perpendicular to marble layers

MarbleFilterWidth 1.0 Filter width multiplier

MarbleSpace "shader" spaces Coordinate space for shading
calculations

Description

The VTranslucentMarble shader simulates translucent marble using subsurface scattering with the
same marble pattern as the VMarble shader.

See Also

Subsurface scattering
VTranslucent shader

10.10.83VWatercolor

 surface shader for watercolor painting



Shader Guide 270

© 2001-2014 SiTex Graphics, Inc.

Illumination Model: diffuse

Features:  texture map

Parameter Default Value Range Description

Diffuse 0.7 0.0-1.0 Diffuse reflectivity

ItemVaryHue 0.0 0.0-1.0 Per item variation in color hue

ItemVarySaturation 0.1 Per item variation in color saturation

ItemVaryBrightness 0.1 Per item variation in color brightness

PaintVary 0.2 Variation in color over the image

PaintVaryFrequency 6 Frequency of variation

PaintVaryCenter 0.35 Zero point for random offset

Seed 301 Random number seed

ColorMapName "" Texture map for base color

ColorMapBlur 0.0 0.0-1.0 Texture blur

OpacityMapName "" Texture map for opacity

OpacityMapBlur 0.0 0.0-1.0 Texture blur

BumpMax 0.0 Maximum bump height

BumpMapName "" Texture map for bump mapping

BumpMapBlur 0.0 0.0-1.0 Texture blur

TextureSizeXY 1 1 Copies of texture in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

The VWatercolor shader simulates the effects of painting with watercolor by randomly varying object
color over the surface.

The shader uses the toon id attribute to identify regions in the scene.  The ItemVary* parameters can
be used to vary  the hue, saturation, and brightness of the color in each region.

In addition to the per-item variation, the shader adds a smooth variation in color across each region,
controlled by the PaintVary parameters.  The PaintVaryCenter parameter controls the extent to which
colors are brightened (values less than 0.5) or darkened (values greater than 0.5).



AIR User Manual271

© 2001-2014 SiTex Graphics, Inc.

This shader is part of a suite of shaders designed to produce a watercolor image.

See Also

strokeWatercolorEdge stroke shader
WatercolorPaper imager shader

10.10.84VWeave

  woven pattern

Illumination model:  plastic or metal

Features: reflections

Parameter Default Value Range Description

Diffuse 0.5 0.0-1.0 Diffuse reflectivity

Specular 0.5 0.0-1.0 Specular reflectivity

SpecularRoughnes
s

0.2 0.0-1.0 Specular roughness

Reflection 1.0 0.0-1.0 Reflection strength

ReflectionSamples 1 1-256 Number of rays when ray tracing

ReflectionBlur 0.0 0.0-1.0 Blur for reflections

ReflectionName "raytrace" Name of reflection map or raytrace
for ray tracing

ReflectionSpace "current" spaces Coordinate space for reflection lookup

Metallic 0 0, 1 0 for plastic, 1 for metal

BumpStrength 0.5 Multiplier for displacement values

Columns 15 Copies in X direction

ColumnGap 0.5 0.0-1.0 Fractional gap between each column

ColumnWave 0.15 Amplitude for wavy pattern

ColumnRoundness 0.0 Cross-sectional rounding

ColumnColor .18 .08 .02 Color of columns

Rows 10 Copies in Y direction

RowGap 0.3 0.0-1.0 Fractional gap between rows

RowWave 0.2 Amplitude for wavy pattern

RowRoundness 0.1 Cross-sectional rounding

RowColor 1.00 1.00 0.41 Color of rows



Shader Guide 272

© 2001-2014 SiTex Graphics, Inc.

TextureSizeXY 1 1 Texture size in X and Y direction

TextureOriginXY 0 0 Location of left, top texture edge

TextureAngle 0 Texture rotation angle in degrees

Projection "st" type Projection to use for 2D coordinates

ProjectionSpace "shader" spaces Coordinate space for projection

ProjectionTransform 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Transformation applied prior to
projection

Description

This surface shader produces a woven pattern.

See Also:

VWeaveDisplacement displacement shader

10.10.85VWood

  solid wood shader

Illumination model:  plastic



AIR User Manual273

© 2001-2014 SiTex Graphics, Inc.

Parameter Default value Range Description

Diffuse 0.7 0.0-1.0 Diffuse coefficient

Specular 0.3 0.0-1.0 Specular coefficient

SpecularRoughness 0.1 0.0-1.0 Specular roughness

WoodColor 0.98 0.63 0.43 Wood color

WoodGrain 0.3 Graininess of base wood

VeinColor 0.23 0.10 0.05 Wood vein color

VeinGrain 1.0 0.0-1.0 Graininess of the vein

VeinWidth 0.8 Fraction of each ring in vein

VeinFuzz 0.8 Fraction of vein for transition

VeinBias 0.8 Relative sharpness of in and out
transitions

GrainFrequency 200 Frequency of fine grain

GrainDepth 0.001 Depth of grain

RingFrequency 15 Frequency of wood rings

RingVary 1 Variation in ring width

TrunkVary 0.1 Deviation of trunk from a straight line

TrunkVaryFrequency 2.0 Frequency of trunk deviation

AngleVary 0.3 Variation in rings around the central axis

AngleVaryFrequency 2.0 Frequency for angular variation

PatternSize 1 Overall scale of pattern

PatternOrigin 0 0 0 Pattern offset

PatternAxis 0 0 1 Axis of trunk

PatternSpace "shader" spaces Coordinate space for calculations

Description

The VWood shader simulates a solid wood texture with grain throughout.

WoodGrain and VeinGrain control the graininess of the base wood and the vein of darker wood
respectively.  VeinWidth gives the fraction of each ring that is part dark material.

VeinFuzz is the fraction of VeinWidth devoted to the transition between light and dark wood.
VeinBias is the relative sharpness of the transition entering and leaving the dark material. A value of
0.5 results in equal transition regions on both sides.

See Also

VPlanks shader

10.11 Volumes

Volume shaders simulate volumetric effects such as smoke or fog.



Shader Guide 274

© 2001-2014 SiTex Graphics, Inc.

fog simple fog shader defined by the RI Spec

VFog fast volumetric fog

VSmoke volumetric smoke

10.11.1 fog

simple fog shader defined by the RenderMan Interface Specification

Parameter Default Value Range Description

distance 1.0 distance beyond which fog completely
obscures

background 0 0 0 fog color

Description

The fog volume shader implements a simple fog function fading to a background color with distance.
This shader does not show the effects of light and shadow on the fog.  The VFog shader provides such
volumetric effects.

See Also

VFog shader

10.11.2 VFog

fast volumetric fog

Parameter Default Value Range Description

StepSize 0.1 Step size for ray marching

LightDensity 0.1 0.0-1.0 Intensity with which fog reflects light

FogColor 1 1 1 Fog color

OpacityDensity 0.0 0.0-1.0 Tendency of fog to block light

AttenuateShadowR
ays

0 0, 1 If 1 fog will attenuate shadow rays

LightIndirectRays 0 0, 1 If 1 fog contributes to indirect rays

Description

The VFog shader produces a volumetric fog effect using AIR's builtin foglight() function.

10.11.3 VSmoke

volumetric smoke shader



AIR User Manual275

© 2001-2014 SiTex Graphics, Inc.

Parameter Default Value Range Description

UnitSize 5.0 Overall scale of shaded volume

OpacityPerUnit 0.5 0.0-1.0 Extent to which smoke obscures
objects objects behind

ReflectancePerUnit 0.5 0.0-1.0 Extent to which smoke reflects light
towards viewer

StepsPerUnit 0.1 Step size for ray marching

MaxSteps 200 1+ Maximum number of ray marching
steps

SmokeVary 0 Strength of smoke variation

SmokeOctaves 3 1-7 Octaves of noise for smoke variation

SmokeFrequencyP
erUnit

10.0 Smoke frequency per unit

Description

Simple volumetric smoke shader using ray marching.

The UnitSize parameter controls the overall scale of the shaded volume.  The UnitSize setting
should be roughly 10-100% of the overall dimension of the volume in the scene.  By adjusting the
UnitSize parameter, the same smoke parameters can used for objects and scenes of different
scales.

OpacityPerUnit gives the extent to which the smoke obscures objects behind it.

ReflectancePerUnit gives the extent to which the smoke reflects light toward the viewer.

StepsPerUnit gives the number of ray marching steps to perform per UnitSize distance.  More steps
take longer to render but produce better results.  MaxSteps gives the maximum number of steps to
march for any one shader call.

If SmokeVary is greater than 0 the smoke will be modulated by some Brownian noise to produce an
non-uniform effect.

This shader is based heavily on the smoke shader in section 12.6 of Advanced RenderMan by
Apodaca and Gritz.

10.12 DarkTree Shaders

DarkTree is a visual shader creation tool from Darkling Simulations:

"DarkTree 2.0 is an advanced procedural shader authoring tool.  Its visual flow-based editor lets you
interactively create  photo-realistic procedural materials, surface shaders, and animated effects.
DarkTree 2.0 includes 100 procedural components that can be combined to generate almost any
texture or surface effect you need."

An evaluation version of DarkTree is available from the Darkling Simulations website.

Using DarkTree Shaders

Darkling Simulations has developed a DSO shadeop (a plugin for the shading language) that allows
DarkTree shaders to be used with AIR (the shaders created by DarkTree are not directly compatible
with with shading language used by AIR).

http://www.darksim.com


Shader Guide 276

© 2001-2014 SiTex Graphics, Inc.

To use DarkTree shaders with AIR, you need to have the DarkTree DSO (called a simbiont by Darkling
Simulations) installed.  AIR version 4.1 and later includes the DarkTree DSO on Windows.  If you are
using an earlier version of AIR, you will need to install the DSO.

AIR comes with two special shaders for use with DarkTree shaders.

The DarkTreeSurface shader allows any DarkTree shader to be used as a surface shader for AIR.

The DarkTreeDisplacement shader allows any DarkTree shader with bump features to be used as a
displacement shader for AIR.

The Air distribution includes several sample DarkTree shaders in the subdirectory:

viztools\darktree

Installing the DarkTree DSO

The installer for Air on Windows should automatically install the DarkTree simbiont.  If that appears to
have failed, follow the manual installation instructions below:

The simbiont files are part of the Air distribution.  The only other step required is to define a
SIMBIONT_RM_COMPONENTS environment variable to point to the location of the components used by
the simbiont.  Those components are located in the

shaders\simbiontrm

subdirectory of your Air installation.

To create an environment variable on Windows 2000/NT/XP:

· Right click the My Computer icon and choose Properties.
· Select the Advanced tab and click Environment Variables.
· Click New to create a new environment variable and enter the variable name and value.

The RMSimbiont archive includes many sample shaders as well as the plugin.  The DarkTree plugin
will search for DarkTree shaders in the path defined by the SHADERS and/or
SIMBIONT_RM_SHADERS environment variables.  Add the directory containing the DarkTree shaders
to one of these variables.  If you have the DarkTree application installed, add the DarkTree directory to
the SIMBIONT_RM_SHADERS variable as well.

10.13 Layered Shaders and Shader Networks

Air 11 introduces the ability to use multiple shaders to compute the shading for surfaces,
displacements, imagers, and environments.

This new capability provides a simple solution to several common shading tasks that would otherwise
require complex custom shaders:

Decaling:  apply an arbitrary number of texture maps to an object's color and feed the result into any
surface shader.

Extra output variables:  add an arbitrary number of additional shaders to an object to produce extra
output values without affecting the normal shading of the object.

Assign different different shaders to different sections of an object:  simple shader compositing



AIR User Manual277

© 2001-2014 SiTex Graphics, Inc.

allows existing surface shaders to be selectively applied to sections of a surface.

Replicate application shader networks:  create arbitrary shader networks by connecting pre-compiled
components.

See below for a description of how to use multiple shaders to address each of these tasks.  Sample
shaders and rib files can be found in

$AIRHOME/examples/layers

Simple Color Layers

Here's a simple RIB fragment that assigns multiple surface shaders to an object:

Surface "ColorMap" "string ColorMapName" "grid.tx"
Surface "+VMarble"

Prepending the shader name with "+" tells the renderer to append the shader to the list of shaders
assigned to the object.  The shaders are executed in the order in which they are assigned.
Subsequent shaders inherit the current shading state (including the values of global variables) from
shaders previously executed.  Here's an implementation of the ColorMap shader that uses a texture
map to set the object's color value:

generic ColorMap(
  string ColorMapName = "";
  float SetColor = 1;
  output varying color __Color = 0;
)
{
   if (ColorMapName!="") {
      __Color = color texture(ColorMapName,s,t);
      if (SetColor==1) Cs=__Color;
   }
}

In the RIB fragment given above, the VMarble shader will use the color map result as one of the input
colors for the marble pattern.  No modification of the VMarble shader is required.

The new generic shader type is compatible with any other shader type.  Generic shaders can be used
to construct re-usable components for layered and networked shaders.

Sample rib: colormap.rib

Decals

The layers example directory includes a LayerDecal shader that applies a masked color to a
surface.  Simple sequential shader assignment allows an arbitrary number of decals to be applied to a
surface without constructing a complex custom surface shader:

  Surface "LayerDecal"
    "ColorMapName" "sitex.tx"
    "OriginXY" [.3 .67]
    "SizeXY" [-.3 -.3]
    "DecalColor" [1 1 1]

  Surface "+LayerDecal"



Shader Guide 278

© 2001-2014 SiTex Graphics, Inc.

    "ColorMapName" "sitex.tx"
    "OriginXY" [.25 .6]
    "SizeXY" [-.25 -0.25]
    "DecalColor" [1 0 0]

  Surface "+plastic"

Sample rib:  decals.rib

Extra Passes

Another simple use for multiple shaders is adding extra output values to a rendering pass.  Air 11
includes a new genOcclusion shader that can be added to any surface to produce an occlusion pass
(stored in a __occlusion output variable).  Sample usage:

  Display "extrapass.tif" "framebuffer" "rgba,color __occlusion"

  ...

  Surface "VMarble"
  Surface "+genOcclusion" "setshaderoutput" 0

Sample rib:  extrapass.rib

Shader Compositing

Air's multi-shader support includes an option to composite one shader on top of another.  Here's an
example that adds a plastic decal to a metallic surface:

Surface "VMetal"
Surface "*VPlastic" "OpacityMapName" "sitex.tx" "ColorMapName"
"square.tx"

The * before the shader name tells Air to blend the output color from the VPlastic shader with the
output color of the VMetal shader using the output opacity from the VPlastic shader.  Any output
variables shared by the two shaders will also be composited using the output opacity.

Sample rib:  compshaders1.rib

The above example shows how to composite a shader with controls for its output opacity.  For surface
shaders without opacity controls, an auxiliary shader can be used to control the opacity.   Here is a
simple generic shader that sets the input opacity value:

generic OpacityMap(
  string OpacityMapName = "";
  float SetOpacity = 1;
  output varying color __Opacity = 0;
)
{
   if (OpacityMapName!="") {
      __Opacity = color texture(OpacityMapName,s,t,"fill",-1);
      if (comp(__Opacity,1)==-1) __Opacity=comp(__Opacity,0); // handle
single channel texture
      if (SetOpacity==1) Os=__Opacity;
   }



AIR User Manual279

© 2001-2014 SiTex Graphics, Inc.

}

This shader allows any surface shader that modulates its output color by the input opacity to be
composited over another shader.  Most surface shaders modulate their output color in this way.

Here is how the OpacityMap shader might be used to add a marble decal to a 2D grid:

  Surface "VGrid2D"
  Surface "+OpacityMap" "OpacityMapName" "sitex.tx"
  Surface "*VMarble"

To optimize the evaluation of composited shaders, Air will skip any shader layer whose input opacity
value is 0.

Sample rib: compshaders2.rib

Shader Networks

Multiple shaders can be used to re-construct a general shader network by defining connections among
the shaders assigned to an object.  Connections are defined by including additional parameters in the
shader declaration.  First, each shader declaration is assigned a name using:

"string layername" "componentname"

Naturally layername does not need to be an actual parameter of the shader.

Each connection is defined with an additional string parameter:

"string connect:toparametername" "fromlayer:fromparametername"

The connection transfers the value of fromparametername in layer fromlayer to the target parameter in
the current shader.  The source parameter must be an output variable of the source shader or one of
the global shader variables Ci and Oi.  The target parameter is normally one of the shader's input
parameters, but it can also be the global input color (Cs) or input opacity (Os).  The source and target
parameters must have the same type.

Sample usage:

Surface "ColorMap"
  "ColorMapName" "grid.tx"
  "layername" "gridlayer"
  "SetColor" 0

Surface "+VMarble"
  "connect:VeinColor" "gridlayer:__Color"

In this example, the marble vein color is taken from the ColorMap shader's __Color output variable.

The network shader capability is used by the Air Stream plug-in for Maya to translate Maya's shader
networks for rendering with Air.

Sample rib:  net1.rib

Limitations



Shader Guide 280

© 2001-2014 SiTex Graphics, Inc.

User primitive data is currently not passed to objects with multiple surface shaders.

10.14 The Shading Language

The shading language used by AIR is a superset of the shading language described in the
RenderMan® Interface Specification 3.2.

The shading language is similar to C, with the addition of special types and functions for shading and
lighting calculations.  You can find out more about the RenderMan® shading language in the following
sources:

The RenderMan® Interface Specification 3.2

The RenderMan Companion: A Programmer's Guide to Realistic Computer Graphics by Steve Upstill.

Advanced RenderMan: Creating CGI for Motion Pictures  by Anthony A. Apodaca and Larry Gritz.

Derivatives in AIR

Several functions in the shading language rely on the ability to take derivatives of arbitrary expressions
over a surface element.  The built-in functions Du() and Dv() are supposed to give the change in an
expression across a surface element in the u- and v-parametric directions, respectively.  They are also
supposed to give the change between shading samples.

Because AIR does not shade along the u- and v-axes, it interprets derivatives differently for efficiency.
Shading is performed at samples which are distributed equally in screen space. Du(e) returns the
change in e between adjacent samples in the horizontal direction, and Dv(e) returns the change
between samples vertically.  du and dv are always 1.

For the common use of derivatives to generate filter widths for anti-aliasing, this gives the desired
result.  E.g.,

fwidth=abs(Du(e)*du)+abs(Dv(e)*dv);

is a good estimate of how much e changes between shading samples.

This implementation of derivatives obviously causes problems for shaders that expect Du() or Dv() to
be aligned with their respective parametric axes.  Shaders that rely on the length of du or dv also will
not work properly.

An exception is made for the global variables dPdu and dPdv, which are always smooth estimates of
the change in P along the u- and v-axes respectively.

Derivatives and Varying Conditionals

Like other renderers AIR interprets derivatives as differences between adjacent shading samples.
When evaluating derivatives, AIR executes shading language instructions on a virtual SIMD (single-
instruction, multiple data) machine:  there is one path of execution, and each instruction is executed at
multiple shading locations.  This implementation ensures that derivative values are always available.
However, it imposes two restrictions:

1. Derivatives must not be taken within varying conditionals.
2. Derivatives must not depend on values that are calculated using varying conditionals.

Functions that take derivatives either explicitly or implicitly are: Du(), Dv(), area(), calculatenormal()



AIR User Manual281

© 2001-2014 SiTex Graphics, Inc.

and Deriv().

Dynamic Shadeops (DSOs)

The shading language can be extended by writing custom functions in a programming language such
as C which can be called from a shader.  A DSO must be compiled to a DLL on Windows or a shared
object under Linux, and the resulting file placed in the shader search path.  The DSO location should
also be included in the search path for header files given to the shading compiler.

AIR will look for a DSO function in a file with the same name or an abbreviated version of the function
name.

A sample DSO with source code can be found in $AIRHOME/examples/shadeop.

10.15 Shading Language Extensions

This section documents additional shading language functionality supported by Air as well as Air-
specific extensions to some of the standard shading language functions.

Variables

The following additional variables are available inside light shaders:

Ns and angles are read-only variables holding the normal and angle parameters of the calling
illuminance() loop.

ss and tt are read-only variables containing the standard texture coordinate values (s,t) at the
current shading location.

Structures

Air 10 and later support user-defined data structures as described here.

Types

Air 11 adds new standard data types integer and boolean:

integer

An integer variable stores whole signed or unsigned integers.  For backwards compatibility, integer
parameters are 100% compatible with floats.  The compiled shader file includes an integer flag for
parameters that an application can use to detect integer parameters and provide an appropriate
user interface.

boolean

The boolean variable type stores a true or false value.  Air 11 also adds reserved words true and
false that are the only valid constants that may be assigned to a boolean variable.  A boolean
variable may be used anywhere a boolean value is expected.

Boolean parameter values in a RIB file should be either 0 (false) or 1 (true).

The compiled shader file includes a boolean flag for parameters which can be used by an
application to detect boolean parameters and provide an appropriate user interface.

Functions



Shader Guide 282

© 2001-2014 SiTex Graphics, Inc.

Illumination

areashadow
blinn
brushedspecular
caustic
cooktorrance
diffuse
foglight
indirectdiffuse
microcylinder
specular

Mapping

environment
shadow
texture

3D point sets

bake3d
collect
subsurfacescatter
texture3d

Ray tracing

fulltrace
gather
isindirectray
isphoton
isshadowray
occlusion
rayhittest
rayinfo
raylevel
trace
visibility

Patterns

voronoi

Procedure and Instancer shaders

meshinfo
ribprintf

DSO Shading Functions

dictionary
str_replace_last_number

Deprecated functions

irradiancecache



AIR User Manual283

© 2001-2014 SiTex Graphics, Inc.

10.15.1 User Structures

AIR 10 introduces user-defined data structures for the shading language.

Custom record types can be created with the new structure keyword.  Here's a simple example:

structure Layer {
   string Map;
   float Weight;
   color Tint;
}

For the most part user-defined types can be used anywhere a simple type is valid.  Individual fields
within a type are accessed using the following notation:

variablename.fieldname

For example:

Layer First;
First.Map = "grid.tx";
First.Weight = 1.0;
First.Tint = color(1,1,1);

A user type variable may also be initialized using a list of values.  The above assignments could also
be made using:

First = {"grid.tx", 1.0, color(1,1,1) };

User types may be passed as function parameters but may not be used as function return types.

Variables of the same user type are assignment compatible:

void CopyLayer(Layer from; Layer to)
{
  to = from;
}

A user type variable can be part of the shader parameter list, in which case each field of the user type
is exported as a separate parameter.  For example, given the following shader declaration:

surface Layers(Layer First = {"", 1.0, color(1,1,1)};)
{...}

the slbtell utility would return:

Surface "Layers"
  "string First.Map" ""
  "float First.Weight" [1]
  "color First.Tint" [1 1 1]

A complete sample shader with source code can be found in

$AIRHOME/examples/userstruct

This excerpt from the main shader code illustrates some of the advantages of user-defined structures:

surface DiffuseLayers(
  ...



Shader Guide 284

© 2001-2014 SiTex Graphics, Inc.

  Layer First = LAYER_DEFAULT_VALUES;
  Layer Second = LAYER_DEFAULT_VALUES;
  Layer Third = LAYER_DEFAULT_VALUES;
)
{
  color C = 0;
  C = ApplyLayer(First, C);
  C = ApplyLayer(Second, C);
  C = ApplyLayer(Third, C);
  ...

1. The code is short and easy-to-understand:  the higher-level functionality of adding layers stands
out while the low-level details are encapsulated by the Layer type.

2. The code does not rely on complicated preprocessor definitions.  It uses only one simple
#define (for the default values).

3. The main source code is independent of the exact defintion of the Layer type and the operations
of the AddLayer function.  Adding a new field to the Layer type requires no modification to the
main code.

Limitations

Arrays of user-defined type variables are not supported.

10.15.2 areashadow()

color areashadow(point P, normal N, float angle,
                 output varying point Psource,
                 "falloff", falloff,
                 "samples", samples,
                 "shadow, traceshadows)

The areashadow() function is valid only within a light source and is only useful in a light source
attached to an area light.  The function samples the geometry attached to an area light, using ray-
tracing for shadows.  The function returns a color giving the fraction of the sample location (defined by
P, N, and angle) that is in shadow.  Psource returns a carefully calculated virtual light origin usable in
an illuminate statement.  A typical usage would be:

light myarealight(float intensity=1; color lightcolor=color(1,1,1); float
falloff=2; float samples=64)
{
   point Psource;

   float inshadow = areashadow(Ps, Ns, angles, Psource,"falloff", falloff,
"samples", samples);

   illuminate(Psource) {
      Cl = (intensity / pow(length(L), falloff) ) * lightcolor * (1-
inshadow);
   }
}

In order to calculate an appropriate Psource, areashadow() requires information about the falloff in
light intensity with distance, which can be set with the optional "falloff" parameter.  The default value is
2.  The optional "samples" parameter gives the number of rays used to sample the area light.  If the
area light geometry is two-sided, light will be cast from both sides of the surface; if the area light
primitive is single-sided, light is cast from the front-facing side, as determined by the orientation.



AIR User Manual285

© 2001-2014 SiTex Graphics, Inc.

areashadow() is a more efficient way to render area lights than methods that rely on supersampling
a light because it avoids multiple passes through the light shader and the corresponding illuminance
loops.  The function is, however, only an approximation.  It works best on convex light shapes:  disks,
rectangles and other convex polygons, spheres, etc.  For complex shapes better results may be
obtained by decomposing the shape into simpler sub-shapes which are each defined as a separate
area light.

10.15.3 bake3d()

bake3d(string filename, string channels, point P, normal N, "float radius",
radius, "float radiusscale", radiusscale, token,value,...);

Bake3d generates a 3D point cache with an arbitrary list of per-point values.  A cache file created with
bake3d() can be queried with texture3d().  If a cache file is generated with the collect()
statement, it can be read during the same rendering used to create it.

The first parameter gives the file name for the cache file.  Each call to bake3d() adds a new point to
the cache file specified by the filename parameter.  An arbitrary list of user-supplied values is
associated with each position and normal entry.  If no applicable normal is available, the normal
parameter should be set to 0.

The channels parameter can be used to select a subset of the user-supplied values to save to a file.

Each entry also has an associated radius that is automatically computed based on the location value P.
An optional "radius" parameter can be used to set an explicit radius value.  The optional
"radiusscale" parameter acts as a multiplier for the associated radius.

Points can be added to an existing file by including an "append" parameter with a float value of 1.

Example:

normal bent_normal;
color occ=occlusion(P,Nf,PI/2,bent_normal);
bake3d(cachename,P,Nf, "occlusion", occ, "bent_normal", bent_normal);

The collect() can be used to bake values for points distributed over an entire surface.  By passing
a maxsearchdistance of 0 to collect(), the normal automatic generation of a subsurface scattering
cache can be suppressed.

See Also
3D textures
texture3d()
collect()
Bake3d surface shader

10.15.4 blinn()

color blinn([string category,] normal Nf, vector V, float eccentricity,
float rolloff)

The blinn() function computes a specular highlight using the popular Blinn illumination model.

The eccentricity parameter (between 0 and 1) determines the overall size of the highlight.

The rolloff parameter controls how rapidly the highlight intensity diminishes.  If rolloff is less than 0, its
absolute value is treated as the index of refraction of the material (for compatibility with SoftImage).



Shader Guide 286

© 2001-2014 SiTex Graphics, Inc.

The blinn() function also provides a "channels" output variable, an array of colors, holding per-
light specular values indexed by a light shader's __channel output variable.  A "nchannels" output
variable gives the number of valid channels.

See Also

VBlinn surface shader

10.15.5 brushedspecular()

color brushedspecular([string category,] normal Nf, vector xdir, vector
ydir, vector V, float xroughness ,float yroughness, float gloss)

The brushedspecular function computes an anisotropic specular highlight.  The xroughness and
yroughness parameters control the highlight size along the xdir and ydir tangent vectors
respectively.  The gloss parameter provides an inverse exponent applied to the final result.

When gloss is set to 1, the brushedspecular illumination model differs from Greg Ward's model
only in omitting division of the result by (4*xroughness*yroughness).

10.15.6 caustic()

color caustic(point P, normal N)

Returns the result of a photon map lookup at point P.

10.15.7 collect()

collect(point P,
        float maxsearchdist,
        float maxsampledist,
        parameterlist) {
 statements;
}

AIR exposes the underlying point set query function used by subsurfacescatter() in the form of a
new collect() shading language statement.  collect() executes the body statements once for
each point in the object's point set within maxsearchdist of P.  Like the subsurfacescatter()
function, collect() generates a point set the first time it is called (if a point set cache file is not
used).

The parameter list can contain one or more of the following output parameters (similar to the usage for
gather):



AIR User Manual287

© 2001-2014 SiTex Graphics, Inc.

Type and Name Description
color surface:Ci sample irradiance

point primitive:P sample position

normal primitive:N sample normal

float area area represented by the sample

float attenuation attenuation function to prevent
incorrect scattering for non-
convex shapes

float distance distance to sample point

10.15.8 cooktorrance()

color cooktorrance(normal N, vector V, float roughness, color ior, color
absorption)

If a positive absorption value is provided, the material is assumed to be
metallic and the corresponding fresnel equation is used.  For non-metals,
use an absorption value of 0.

10.15.9 dictionary()

float dictionary(string dictname, string keyname, float fvalue);
float dictionary(string dictname, string keyname, color cvalue);
float dictionary(string dictname, string keyname, string svalue);

The dictionary function alllows one to look up a set of values based on a name, like looking up a word's
definition in a dictionary.

The dictionary function looks for a text file named dictname and tries to load a list of token value pairs,
one per line.  The token values should look like

LightBlue 0.6 0.6 1

The dictionary() call returns 0 if it succeeds.  If an error occurs, the function returns one of the
following error codes:

-1:  unable to find or read dictionary file
-2:  key name not found
-3:  unable to convert value to the requested type

Examples and source code:

$AIRHOME/examples/shadeop/dictionary

10.15.10diffuse()

color diffuse([string category,] normal Nf, "roughness", roughness, ...)

Diffuse roughness



Shader Guide 288

© 2001-2014 SiTex Graphics, Inc.

The diffuse() function supports an optional "roughness" input parameter of type float giving the
roughness used in the Oren and Nayer illumination model for rough diffuse surfaces such as clay.  The
roughness parameter defaults to 0, which is the value for the regular diffuse computation.  The valid
range for roughness is 0 to 1.

Diffuse output variables

The diffuse() function provides the following optional color output variables

"unshadowed" color diffuse lighting without shadows for all non-indirect lights

"shadow" color shadow value complementing the unshadowed output
value

"indirect" color indirect lighting

"channels" color array per-light diffuse values (indexed by a light's __channel
output variable)

"unshadowedchannel
s"

color array per-light unshadowed diffuse values (indexed by a light's
__channel output variable)

"nchannels" float number of valid channels

The unshadowed output value can only be computed correctly for lights that export a color
__unshadowed_Cl output variable containing the light intensity without shadows.  The shaders for
AIR, MayaMan, and RhinoMan all provide this variable.

The indirect lighting output is computed by summing the diffuse contributions from lights that export a
float __indirectlight variable set to 1.  The indirect shader for indirect diffuse illumination and the
envlight shader for ambient occlusion are both categorized as indirect lights.

The shadow output value is computed so that the following relation holds:

diffuse = unshadowed * (1-shadow) + indirect

Shaders can test a DIFFUSEEXT symbol to see if the shading compiler supports these extensions.

The extra output variables from diffuse() are typically used to provide extra output variables to a shader
for multipass rendering.  The expanded matte shader included with AIR illustrates typical shading
language usage:

surface matte(
   float Ka = 1, Kd = 1;

   output varying color __ambient = color(0);
   output varying color __diffuse = color(0);
   output varying color __diffuse_unshadowed = color(0);
   output varying color __shadow = color(0);
   output varying color __indirect = color(0);
)
{
   normal Nf;

   Nf = faceforward(normalize(N), I);

   Oi = Os;



AIR User Manual289

© 2001-2014 SiTex Graphics, Inc.

   __ambient = Oi * Cs * Ka * ambient();

   color diffuse_weight = Oi * Cs * Kd;

   __diffuse = diffuse_weight *
               diffuse(Nf, "indirect", __indirect,
                       "unshadowed", __diffuse_unshadowed,
                       "shadow", __shadow);

   __indirect *= diffuse_weight;
   __diffuse_unshadowed *= diffuse_weight;

    Ci = __ambient + __diffuse;
}

See Also

Multipass rendering
Light Channels

10.15.11environment()

color environment(mapname, ...)
color environment("raytrace", ...)
color environment("environment", ...)

Optional Input Parameters:

Type and Name Description
float bias offset to prevent incorrect self-intersections

float blur blur factor for fuzzy reflections

string label user-assigned name for rays cast by this call

float maxdist maximum distance to search for intersecting
objects

float samples number of rays to trace when ray tracing or
samples to use for map access

string subset restricts intersection tests to members of the
specified groups

vector majoraxis tangent vector for anisotropic reflections

float majorblur blur in majoraxis direction for anisotropic
reflections

float minorblur blur in minor axis direction for anisotropic
reflections

color weight weight or importance of this environment call for
importance-based ray tracing

Ray Tracing Reflections

If the file name passed to an environment call is "raytrace" or "reflection", Air will use ray



Shader Guide 290

© 2001-2014 SiTex Graphics, Inc.

tracing to return an environment value.  The standard "blur" and "bias" parameters to
environment() have approximately the same meaning when ray tracing is used.

Sampling the Scene Environment

If the file name is the special value "environment", Air will sample the current environment shader.
The blur parameter is interpreted as the half-angle (in radians) of a cone of directions over which to
sample the environment, and the samples parameter can be used to super-sample the region.

Optional Output Parameters

The environment() function accepts an optional "alpha" output parameter that returns the next
channel after the channels returned by the environment() call when an environment map is used.
When ray tracing is used to compute the returned value, the alpha value returns the fraction of the
sampled environment cone occluded by reflected objects.  The alpha value returned by the ray tracer
can be used to composite tracing results with a background environment map.

In AIR 9 and later environment() provides a "background" output parameter of type color that
stores the contribution of the background environment map or color for reflection rays.

Beginning with AIR 9 environment() can return arbitrary output variables from the surface shaders
of ray-traced primitives in the same manner as the gather() construct.  For example:

color renv;
color Crefl = environment("raytrace",R,"surface:__environment",renv);

BRDF Sampling

Air 13 introduces a new option to importance sample the environment based on a BRDF.  When
sampling based on a BRDF, the environment() function should be passed the shading normal vector
instead of the reflected vector.  BRDF parameters are passed as extra parameters to the
environment() call prefixed with "brdf:".  Here's an example:

Cr = color environment("raytrace", Nf,
                       "samples", Samples,
                       "weight", weight,
                       "brdf", "cooktorrance",
                       "brdf:roughness", Roughness,
                       "brdf:ior", ior,
                       "brdf:absorption", absorption);

Currently only ray traced environment evaluation supports BRDF sampling.  The following BRDFs are
supported:

lambert
standard diffuse() BRDF, no extra parameters

air
BRDF for the builtin specular() function, one extra parameter "brdf:roughness"

blinn
BRDF for the builtin blinn() function, two extra parameters:  "brdf:eccentricity", "brdf:rolloff"

ward
BRDF for the bultin brushedspecular() function, two parameters:  "brdf:xroughness",
"brdf:yroughness"



AIR User Manual291

© 2001-2014 SiTex Graphics, Inc.

phong
BRDF for the builtin phong() function, one parameter "brdf:exponent"

cooktorrance
BRDF for the cooktorrance() function.  Three parameters:  "brdf:roughness", "brdf:ior",
"brdf:absorption"

See Also

trace()
Environment shaders
BRDF Reflection Sampling

10.15.12foglight()

color foglight(point from; point to; float stepsize,
               color lightdensity; color opacitydensity;
               output color opacity);

The foglight function integrates an illuminated uniform fog function between the from and to points.
Only light shaders with a __foglight output parameter set to 1 or a __category parameter that
includes "foglight" are considered by this function.  The stepsize parameter gives the step size for
marching along the ray; lower step sizes take more time but produce more accurate results.

The function returns the cumulative illumination, and the opacity variable returns the cumulative
opacity along the ray segment.

10.15.13fulltrace()

float fulltrace(point pos, vector dir,
                output color hitcolor,
                output float hitdist,
                output point Phit,
                output normal Nhit,
                output point Pmiss,
                output vector Rmiss);

Traces a ray from pos in direction dir.  If the ray hits any object, hitdist is the distance to the
closest object and Phit and Nhit contain the position and normal at that point.  If no object is hit,
hitdist will be large, and hitcolor will be (0,0,0).

Ray-tracing may spawn rays recursively (if a ray hits a reflective or refractive object).  If any ray fails to
hit an object, Pmiss and Nmiss will be set to the position and direction of the deepest ray that failed to
hit any objects, and the function will return the depth of that ray.  Otherwise the function returns 0.

10.15.14gather()

gather(string category, point pos,
       vector axis, float angle,
       float samples, parameters) {
         statements
       } [else { statements }]

Ray Tracing



Shader Guide 292

© 2001-2014 SiTex Graphics, Inc.

gather is a looping construct for sampling a cone of directions using ray tracing.  Rays are fired from
pos with the ray direction randomly distributed within angle radians of the axis direction.  If a ray hits
an object, the optional output variables are updated and the first set of statements is executed.  If a ray
misses all objects, the optional else block is executed if present.

Samples is the requested number of rays to trace.  The actual number of rays traced may be less
because AIR automatically reduces the number of rays cast at deeper levels of recursion.  There may
even be zero rays traced, and a shader should handle that case properly.

The category parameter is a hint to the renderer about the purpose of the gather query.  The following
categories are recognized:

"illuminance"  sample the incoming indirect light with indirect rays
"environment"  sample the surrounding environment with reflection rays
"occlusion"    sample with shadow rays

gather accepts a number of optional input and output parameters.

Optional Input Parameters

Type and Name Description
float bias offset to prevent incorrect self-intersections

string distribution sample distribution: "uniform" or
"cosine"

string label user-assigned name for rays cast by this
call; a shader can query the label with
rayinfo()

float maxdist maximum distance to search for traced
objects

string subset restricts intersection tests to members of
the specified groups as determined by
Attribute "grouping"
"membership"

float othreshold gives an opacity threshold.  Tracing stops
when the cumulative opacity along the ray
exceeds the threshold.  The default
threshold is 0.

Optional Output Parameters



AIR User Manual293

© 2001-2014 SiTex Graphics, Inc.

Type and Name Description
point ray:origin location from which the ray was traced

vector ray:direction normalized ray direction

float ray:length distance from ray origin to hit location,
or 1.0E15 if the ray missed all objects

primitive:name Returns the value of the named global
variable of the object intersected by a
ray prior to shader evaluation.
Supported variable names are P, N,
Cs, and Os.

surface:name Returns the value of the
corresponding variable after execution
of the intersected object's surface
shader.  Supported variables are Ci,
Oi, P, N, and any surface output
variable.

point:name Returns the value of the named
variable associated with a point
sample in a point cloud

Point Cloud Sampling

Air 12 extends the gather() construct to allow querying of point cloud data.  Sample usage:

color csum = 0;
integer count = 0;
color tcolor;
gather("pointcloud:filename", P, N, maxsamples, "maxdist", maxdist,
"point:mycolor", tcolor) {
   csum += tcolor;
   count += 1;
}
color caverage = 0;
if (count>0) caverage=csum/count;

The normal vector is ignored.  The query will return up to maxsamples points from the cloud within the
search radius specified with the maxdist parameter.  Values associated with a given point can be
queried by including "point:varname" queries in the list of gather() parameters.

Limitations

gather() statements should not be nested.

10.15.15indirectdiffuse()

color indirectdiffuse(point P, normal N,
                      float samples, parameterlist)

indirectdiffuse returns the indirect illumination at point P.  If the samples parameter is less than



Shader Guide 294

© 2001-2014 SiTex Graphics, Inc.

1, the number of samples is taken from the indirect:nsamples attribute.

indirectdiffuse accepts the following optional parameters:

Type and Name Description
float blur blur factor for optional environment map

string environmentmap environment map used to provide color for
rays that miss all objects

string environmentspace coordinate space for environment map
lookup

string label user-assigned name for rays cast by this call;
a shader can query the label with
rayinfo()

string subset restricts intersection tests to members of the
specified groups as determined by
Attribute "grouping" "membership"

float maxhitdist maximum distance to search for intersecting
objects

float maxerror maximum error allowed when re-using
samples from the occlusion cache.  If 0, the
occlusion cache is not used.  If less than 0 or
omitted from the occlusion call, the
indirect:maxerror attribute value is used.

float maxpixeldist maximum distance in pixels between
samples in the occlusion cache.  If omitted or
less than 0, the indirect:maxpixeldist attribute
value is used.

float adaptive controls adaptive sampling:  1 enables, 0
disables, any other value defaults to the
indirect:adaptivesampling attribute setting

10.15.16irradiancecache()

This function has been deprecated in AIR 10 and later.

AIR exposes the irradiance caching functionality used by the indirectdiffuse() and
occlusion() functions so that users can create and access custom caches for special purposes.
The irradiancecache() function has two operating modes, insert and query:

Cache Insertion

irradiancecache("insert", string cachename,
                string cachemode,
                point P, vector N,
                "harmonicmeandist", float hmean,
                values);



AIR User Manual295

© 2001-2014 SiTex Graphics, Inc.

Inserted values can be any of:

"irradiance", color irrad
"coverage", float alpha
"environmentdir", vector dir

The harmonic mean distance is the reciprocal of the average of the reciprocal hit distances of the rays
that went into calculating the inserted values (presumably with a gather statement).

Cache Query

float irradiancecache("query", string cachename,
                      string cachemode,
                      point P, vector N,
                      "maxerror", float maxerror,
                      "maxpixeldist", float maxpixeldist,
                      values);

A cache query returns 1 if the cache holds values that satisfy the constraints of the maxerror and
maxpixeldist parameters.  If maxerror or maxpixeldist are omitted or are negative, the value of the
corresponding indirect attribute for the primitive is used.

cachemode is used to control whether the cache is written to a file or loaded from a file.  If
cachemode contains "w", the cache will be written to file cachename when rendering is complete.  If
cachemode contains "r", the cache will be initialized with data from file cachename if it exists.

10.15.17isbaking()

float isbaking()

returns 1 if the shader is being executed by BakeAIR, the Shading and Lighting Baker.

10.15.18isindirectray()

float isindirectray()

Returns 1 if the shader is being executed to estimate indirect illumination; otherwise, returns 0.

10.15.19isphoton()

float isphoton()

returns 1 if a light shader is being executed for a photon.

10.15.20isshadowray()

float isshadowray()

Returns 1 if the shader is being executed to determine visibility for a shadow ray or shadow map;
otherwise, returns 0.

10.15.21meshinfo()

float meshinfo(token, variable)

AIR 8 introduces a new instancer shader type that can create new geometry at render time based on
an existing primitive.  The meshinfo() function provides access to information about the base primitive
to which an instancer shader is attached.  Meshinfo() is only valid inside an instancer shader.



Shader Guide 296

© 2001-2014 SiTex Graphics, Inc.

Meshinfo() is typically used in a two-stage process:  first, meshinfo() is called to establish a sampling
method and location.  Then meshinfo() is called to query primitive variable values at the current sample
location.

Sample Methods

The following sampling methods are supported:

Sample by vertex

float vix=0;
if (meshinfo("sample:vertex",vix")==1)  // valid vertex index

This sample method allows vertex, varying, and facevarying data to be queried.  For facevarying
data Air picks one face's vertex value for the query result.

Sample at vertex on face

float facevx[2];
facevx[0] = faceix;
facevx[1] = vxindexonthisface;
if (meshinfo("sample:facevertex",facevx)==1) // valid vertex on this face

This sample method allows access to varying, vertex, and facevarying data.

Sample at standard texture coordinates

float xy[2];
xy[0]=scoord;
xy[1]=tcoord;
if (meshinfo("sample:st",xy)==1)  // valid (s,t) texture position on
surface

This method provides access to varying, vertex, and facevarying data.  The base primitive must of
course have a well-defined set of standard texture coordinates.  If two locations on the surface share
the same texture coordinates, the sample result is not well-defined.

Sample curve

float cv[2];
cv[0]=curveindex;
cv[1]=positionalongcurve;
if (meshinfo("sample:curve",cv")==1)  // valid position along specified
curve

This method samples data on the curve given by the first index and the position specifed by the
second array parameter.  The second parameter should lie between 0 (the start of the curve) and 1
(the curve end).

Sample time

float mytime=time;
meshinfo("sample:time",mytime);

This method sets the time at which to query a base mesh with vertex motion blur.  This method is
currently only supported for vertex queries, and only vertex position data P is blurred.  In typical
usage a shader will sample at the global 'time' value and at 'time'+'dtime'.



AIR User Manual297

© 2001-2014 SiTex Graphics, Inc.

Querying Primitive Variables

Once the sample method and location have been set, subsequent calls to meshinfo() can query any
standard or user-defined primitive variable at the current sample location.  For example:

point pos;
if (meshinfo("P",pos)==1)  // got position data

normal nrm;
if (meshinfo("N",nrm)==1)  // got normal data

Point, normal, and vector values are returned in object space coordinates for the base primitive.

Standard texture coordinates are always stored as an array of 2 floats:

float st[2];
if (meshinfo("st",st)==1) //got standard texture coordinates

The underlying primitive representation will be a polygon mesh for all surface primitives, a list of line
segments for curves, and a set of vertices for point primitives.

Information Functions

Meshinfo supports the following information functions for querying the base primitive:

Number of Vertices

float nvx=0;
meshinfo("count:vertices",nvx);

Number of Faces

float nfaces=0;
meshinfo("count:faces",nfaces);

10.15.22microcylinder()

color microcylinder([string category,] normal Nf, vector V, vector T,
                    float ior, float spread, float isotropy, float
specularspread, ...)

The microcylinder() function implements a shading model for cloth threads based on the paper "A
Practical Microcylinder Appearance Model for Cloth Rendering" by Sadeghi et al.  The returned value is
the sum of light scattered through the volume of the microcylinder, which can be used to modulate the
base color of the thread.  The function also provides optional output variables with a specular
component.

Input Parameters



Shader Guide 298

© 2001-2014 SiTex Graphics, Inc.

Nf normal shading normal

V vector unit vector pointing away from the surface in the
view direction

T vector tangent vector

ior float index of refraction of the material

spread float angle in radians for volume scattering

isotropy float extent to which volume scattering is isotropic
(range of 0 to 1)

specularspread float angle in radians for reflection at the
microcylinder surface

"vectors" array of
vectors

piece-wise curved tube in the local coordinate
system

In the simplest case, the microcylinder() function returns the results for a single microcylinder with main
axis parallel to T.  If the optional "vectors" parameter is provided, the result is the length-weighted
average of all microcylinders in the vector list.  Each vector direction is defined in a local coordinate
system in which T is the X axis, and Nf is the Y axis.

Output variables

The microcylinder() function provides the following optional color output variables

"specular" color specular reflection result

"unshadowed" color volume scattering without shadows for all direct lights

"shadow" color shadow value complementing the unshadowed output
value

"indirect" color indirect lighting

"channels" color array per-light volume scattering values (indexed by a light's
__channel output variable)

"specularchannels"color array per-light specular values (indexed by a light's __channel
output variable)

"nchannels" float number of valid channels

Examples

For sample usage, see the source code for the VCloth and VClothAdvanced shaders in
$AIRHOME/vshaders/Surfaces.

10.15.23occlusion()

color occlusion([string mapname,] point P,
                normal N, float angle,
                varying output normal Nunoccl,
                parameterlist)

Returns the extent to which the current location is blocked or occluded by surrounding objects.  The



AIR User Manual299

© 2001-2014 SiTex Graphics, Inc.

direction in which the location is least obscured in Nunoccl.

The angle parameter gives the half-angle in radians of the cone of directions that is sampled for the
occlusion result.

If the optional mapname parameter is not provided or it has the special value "raytrace", AIR uses
ray tracing to estimate the occlusion.  Otherwise, mapname is the name of an occlusion map.

See Ambient Occlusion for more information.

Optional Input Parameters:

Type and Name Description
float bias offset to prevent incorrect self-

intersections

string label user-assigned name for rays cast by this
call

float maxhitdist maximum distance to search for
intersecting objects

float maxerror maximum error allowed when re-using
samples from the occlusion cache.  If 0,
the occlusion cache is not used.  If less
than 0 or omitted from the occlusion call,
the indirect:maxerror attribute value is
used.

float maxpixeldist maximum distance in pixels between
samples in the occlusion cache.  If omitted
or less than 0, the indirect:maxpixeldist
attribute value is used.

float samples number of rays to trace when ray tracing

string subset restricts intersection tests to members of
the specified groups

float adaptive controls adaptive sampling:  1 enables, 0
disables, any other value defaults to the
indirect:adaptivesampling attribute setting

float maxsolidangle for point-base occlusion, the maximum
solid angle in radians for approximated
point groups

float
optimizenormal

for traced occlusion, set to 0 to use the
normal value passed to occlusion as-is
rather than the surface normal when
computing occlusion.  Useful when
sampling occlusion at positions other than
the current shading location.

float
sampleenvironment

1 enables sampling of the scene
environment for unoccluded rays



Shader Guide 300

© 2001-2014 SiTex Graphics, Inc.

Optional Output Parameters

Type and Name Description

color environment result of sampling the scene environment
when the sampleenvironment mode is
enabled

See Also

Ambient Occlusion

10.15.24rayhittest()

float rayhittest(point from, vector dir,
                 output point Phit,
                 output normal Nhit)

Tests for an object in direction dir from position from.  If an object is encountered, Phit and Nhit
contain the position and normal of the object and the function returns the distance to the object;
otherwise the function returns a large number (1.0E15).

10.15.25rayinfo()

float rayinfo(string name, variable)

Returns information about the ray that caused the shader to be run.  rayinfo() returns 1 if the query
succeeds, and 0 otherwise.  Supported keywords are:

"depth" (float) - returns the current ray level, where level 0 is a camera ray.

"type" (string) - returns the type of ray:  "camera", "trace", "transmission", "photon", or "collector"

"label" (string) - returns the label associated with the current ray by a "label" parameter to the calling
ray tracing function

"weight" (color) - returns the weight or importance of the current ray.  See Importance-
Based Rendering for more information.

"indirectdepth" (float) - indirect trace depth for current ray

"samplecount" (float) - total sample count for rays spawned from trace() etc as set by the
"samples" parameter

"sampleindex" (float) - index of current ray in the range 0..samplecount-1

10.15.26raylevel()

float raylevel()

Returns the level of reflection/refraction at which the shader is being executed, with a value of 0
indicating the shader is being executed from the camera.



AIR User Manual301

© 2001-2014 SiTex Graphics, Inc.

10.15.27ribprintf()

ribprintf(patternstring, arglist);

AIR 8 introduces the ribprintf() statement to allow instancer and procedure shaders to send RIB
commands to the renderer.  Ribprintf works the same as printf() except that the output is sent to AIR's
RIB parser instead of the console.

See Also

Instancer shaders
Procedure shaders

10.15.28shadow()

color shadow("raytrace", ...)

If the file name passed to shadow is "raytrace" or "shadow", AIR will use ray tracing for shadows
instead of a shadow map.

The standard shadow() function accepts several optional input parameters:

Type and Name Description
string subset restricts ray traced intersection tests to

members of the specified groups

string label user-assigned name for rays cast by this
call

float maxdist max distance to trace for shadows,
measured from the current shading
location

color weight weight or importance of this trace call for
importance-based ray tracing

10.15.29specular()

color specular([string category,] normal Nf, vector V, float roughness,
sharpness)

The specular() function accepts an optional "sharpness" parameter with a value between 0 and
1.  A value of 0 produces the normal specular result.  Larger values produce a highlight with a sharper
edge, giving a glossy appearance.

The specular() function also provides a "channels" output variable, an array of colors, holding
per-light specular values indexed by a light shader's __channel output variable.  A "nchannels"
output variable gives the number of valid channels.

10.15.30str_replace_last_number

string str_replace_last_number(string olds, float newnum)

This function searches backwards from the end of the string looking for an integer value.  If one is
found, it is replaced with the provided new value.



Shader Guide 302

© 2001-2014 SiTex Graphics, Inc.

This function may be useful when dealing with a numbered sequence of file names.

10.15.31subsurfacescatter()

color subsurfacescatter(
   point P, normal N,
   vector meandiffusepath,
   color reflectance,
   float ior, float maxsampledist)

The subsurfacescatter() function returns an estimate of the multiple scattering component of
subsurface scattering at P.

meandiffusepath is the average distance light diffuses through the material for the red, green, and
blue color components.  The mean diffuse path can be calculated from the reduced scattering
(sigma_s) and absorption coefficients (sigma_a):

mdf = 1/sqrt(3*(sigma_s+sigma)*sigma_a)

reflectance is the average diffuse reflectance

maxsampledist is the maximum distance between samples in the point cloud.  If maxsampledist is
less than 0, AIR will automatically calculate the distance based on the meandiffusepath and reflectance
values.  This parameter is provided to allow users to override the default behavior.

Real world values for meandiffusepath and reflectance can be found in Jensen et al "A Practical Model
for Subsurface Light Transport" in the SIGGRAPH 2001 Proceedings.

When subsurfacescatter() is first called, AIR generates a set of points covering all surfaces in
the point set.  Each point is shaded by querying its shaders with a ray type of "collector"; points
are shaded on the "outside" of the surface as determined by the current orientation.  A shader should
test for evaluation by a "collector" ray, and return the irradiance to be stored in the point cloud.
For example:

  string raytype="";
 rayinfo("type", raytype);

 if ((raytype=="collector") || (raytype=="photon"))

   Ci= Cs * (Ka * ambient() + Kd * diffuse(Nf));

 else

   Ci = Oi * (subsurfacescatter(P, Nf,
              SSDistance * SSDistanceScale,
              SSReflectance,
              IndexOfRefraction,
              SSSampleDistance)+
        Ks*specular(Nf,normalize(-I),roughness));

Sample shaders that use subsurfacescatter include VSkin, VTranslucent, and VTranslucentMarble.

Varying SSS Parameters

In Air 10 the subsurfacescatter() function handles varying parameter values properly.  However
using a varying mean diffuse path, reflectance, or ior will be much slower.  When using  varying
parameters, the max sample distance should be explicitly set to produce consistent results.  Use as



AIR User Manual303

© 2001-2014 SiTex Graphics, Inc.

large a max sample distance as feasible to save render time

See Also

collect()

10.15.32texture()

color texture(..., "alpha", alpha)

The standard texture() accepts an optional "alpha" parameter that returns the next channel after
the channels returned by the texture() call.  For an RGBA file accessed with a color texture read
starting at channel 0, the returned value will be the alpha channel of the file.

The extra channel does not significantly slow down rendering, so it is always better to request an alpha
channel if it might be needed rather than making an extra texture call.

Air 13 and later provide a builtin antialiased 2D noise pattern which can be generated by providing the
special value "noise" as the texture map name.

10.15.33texture3d()

texture3d(string filename, point P, normal N, "float blur", blur, "float
width", filterwidth, "float fill", fillvalue, token, value,...);

Texture3d returns a filtered sample from a 3D texture file generated by bake3d.  The filter region is
automatically computed based on the input query position.  The optional "width" and "blur"
parameters can be used to scale or increment the sample region respectively.  Texture3d will filter all
points whose region of influence overlaps the query filter region.  If a given token does not have an
associated value in the point file, the corresponding variable value is filled in by the fillvalue (0 if the
"fill" parameter is not specified).

Example:

surface bakematte3d(
  float Diffuse = 1;
  string BakeMapName="";
  float BakeMapBlur = 0;
  float BakeMapFilterWidth = 1;
  float BakeIt = 0;
  float BakeRadius = 0.1;)
{
  normal Nnrm = normalize(N);

  string raytype="";
  rayinfo("type",raytype);

  if ((BakeMapName!="") && (raytype!="collector")) {
    if (BakeIt==0) {
      texture3d(BakeMapName, P, Nnrm,
                "width", BakeMapFilterWidth,
                "blur",BakeMapBlur,
                "Cs",Ci);
    } else {
      collect(P,0,BakeRadius) {};
      Ci=1;
    }
  } else {



Shader Guide 304

© 2001-2014 SiTex Graphics, Inc.

    normal Nf = faceforward(Nnrm,I);
    Ci = Diffuse * Cs * diffuse(Nf);
    if (BakeMapName!="") bake3d(BakeMapName,"Cs",P,Nnrm,"Cs",Ci);
  }
  Oi=Os; Ci*=Oi;
}

See Also

bake3d()
Bake3d surface shader

10.15.34trace()

color trace(point pos, vector dir, parameterlist)

Optional Input Parameters

The standard trace() function accepts several optional input parameters:

Type and Name Description
float bias offset to prevent incorrect self-intersections

float blur blur factor for fuzzy reflections

string label user-assigned name for rays cast by this call

float maxdist maximum distance to search for intersecting
objects

float samples number of rays to trace

string subset restricts intersection tests to members of the
specified groups

vector majoraxis tangent vector for anisotropic reflections

float majorblur blur factor in majoraxis direction for anisotropic
reflections

float minorblur off-axis blur for anisotropic reflections

color weight weight or importance of this trace call for
importance-based ray tracing

Optional Output Parameters

The trace() function accepts an optional "alpha" output parameter that returns the fraction of the
sampled environment cone occluded by reflected objects.  The alpha value returned by the ray tracer
can be used to composite tracing results with a background environment map.

In AIR 9 and later trace() provides a "background" output parameter of type color that stores the
contribution of the background environment map or color for reflection rays.

Beginning with AIR 9 trace() can return arbitrary output variables from the surface shaders of
intersected primitives in the same manner as the gather() construct.  For example:



AIR User Manual305

© 2001-2014 SiTex Graphics, Inc.

color renv;
color Crefl = trace(P,R,"surface:__environment",renv);

See Also

environment()
Ray Traced Reflections

10.15.35visibility()

color visibility(point p1, point p2)

Returns the visibility between two points.  If there are no intervening objects, the function returns
(1,1,1).  If there is a fully opaque object in between, returns (0,0,0).  Partial occlusion will return a
partial transmission value.

10.15.36voronoi()

void voronoi(string type, point pos, float jitter,
             output float dist1, output point center1);

void voronoi(string type, point pos, float jitter,
             output float dist1, output point center1,
             output float dist2, output point center2);

The voronoi() function computes a 2D or 3D cellular pattern.  The type parameter should be either
"grid2d" or "grid3d".  The jitter parameter controls deviation from a regular grid and should lie between
0 and 1.

The dist1 parameter returns the distance from the query point pos to the nearest cell center
center1.  Similarly, dist2 returns the distance from pos to the second nearest cell center center2.

11 2D Texture Mapping

Preparing Texture Maps

For the most efficent rendering in terms of speed and memory use, all texture files should first be
converted to AIR texture maps.  AIR texture maps can be created with the mktex command-line utility
or the mktexui graphical user-interface (in addition to the RIB MakeTexture command).  Your plugin
may automatically perform this conversion for you.

Although AIR can directly use textures in a variety of graphics formats, creating an AIR texture file has
several advantages:

· The wrapping behavior of the texture map can be specified.
· The new texture file is a mip-map - it stores multiple pre-filtered copies of the texture at different

resolutions.  When accessing the texture the renderer will use an appropriate resolution based on
the region of the texture visible in the area being shaded, resulting in fewer aliasing artifacts.

· Texture files are tiled, allowing the renderer to selectively load only the portions of an image that
are needed.

· Texture files are compressed to minimize disk space and bandwidth usage.
· AIR limits the memory used by tiled texture maps to a user-defined maximum, dynamically loading



2D Texture Mapping 306

© 2001-2014 SiTex Graphics, Inc.

and unloading tiles as needed.

Automatic Texture Conversion at Render Time

Air 14 introduces a new option to automatically convert source images to Air texture maps internally
at render time, providing the same high-quality texture filtering as that obtained by pre-converting
images to Air texture files for rendering.  Enable this automatic mip-mapping with:

Option "texture "boolean automipmap" [1]

When this features is enabled, Air will resize all source images so the width and height are both a
power of 2.  The following option controls how an image is resized:

Option "texture" "string autoresize" "nearest"

The default resize mode rounds each dimension to the nearest power of 2.  If the resize mode is set
to "down", each dimension is reduced to the next lower power of 2.  When resize mode is set to up,
the next higher power of 2 is used.  Here are the corresponding output values for a 640x480 input
image:

nearest: 512x512
down: 512x256
up: 1024x512

Texture Input Formats

AIR and its texture-conversion tools can read image files in a variety of popular graphics formats.  AIR
selects a texture reader based on the file name extension.  If a file does not have an extension
associated with a particular driver, AIR assumes the file is an AIR texture map.

The following is a list of currently supported raster image formats:

Format Extension Data Types Channels

TIFF tif, tiff 8-bit,16-bit, float unlimited

Portable Network Graphics png 8-bit and 16-bit 1-4

SGI File Format sgi, rgb 8-bit and 16-bit unlimited

JPEG Format jpg, jpeg 8-bit 1 or 3

HDR Format hdr, rad float 3

Photoshop Format psd 8-bit, 16-bit 3 or 4

Windows Bitmap bmp 8-bit 3 or 4

Softimage PIC pic 8-bit 3 or 4

IES light profile ies float 1

PTEX ptex, ptx 8-bit, 16-bit,
float,half

unlimited

High-Dynamic Range (HDR) Images



AIR User Manual307

© 2001-2014 SiTex Graphics, Inc.

AIR can use High Dynamic Range (HDR) images as texture maps and environment maps.  AIR can
read images in the Radiance HDR image format that is popular for storing high-dynamic range images.
As with other texture and environment maps, conversion to an AIR texture file using AIR's texture
conversion utilities is recommended for best performance and results.

Texture Cache

AIR loads texture files, shadow maps, and environment maps as they are needed by the renderer.  AIR
uses a simple least-recently used cache to keep only the most recently accessed sections of texture in
memory, thereby keeping the memory used by all types of textures to a minimum.  The texture cache
size is set with

Option "limits" "integer texturememory" [64000]

which gives the maximum cache size in K.  Beginning with AIR 13, all rendering threads share the
same texture cache.  In prior releases, each rendering thread managed its own cache.

Textures and Gamma Correction

When a final image has gamma correction applied, you may find that your texture maps appear
washed out or faded.

This problem occurs most often with commercial texture libraries that have been pre-gamma corrected
to display properly on a CRT.  To get such textures to render properly with AIR, apply an inverse
gamma correction factor during the texture conversion process with the mktex or mktexui tools.  Here
are some common gamma factors and the corresponding inverses:

Gamma Inverse

1.8 0.56

2.0 0.5

2.2 0.45

You may also perform this conversion by using the color space conversion options in mktex or mktexui
to convert from sRGB color space to a linear color space.

Texture Wrap Modes

For images used as textures that have not been converted to Air texture maps, the default wrap mode
can be set with the following options:

Option "texture" "string wrapx" "periodic"
Option "texture" "string wrapy" "periodic"

Other valid wrap values are "black" and "clamp".

11.1 Projecting Textures ("Decaling")

Here's how to use the AIR Show display window to position textures for projective mapping:

A projected texture is mapped onto an object as though it were shown through a slide-projector.  AIR
Show allows you to use the camera-positioning controls in a modeling program to position a texture for



2D Texture Mapping 308

© 2001-2014 SiTex Graphics, Inc.

projection.  Shaders included with AIR that can project texture maps include VDecal3DPlastic.

· Pretend that the camera is a light that is going to shine the texture map onto an object.

· Choose or create a view window in your modeling program.  If you have a choice, use an
orthographic view (or a perspective view with a small field of view) to reduce distortion.

· Position the camera so the object you want to map is visible, and so that you could draw a rectangle
on the object that would define the texture map position.

· Export the scene and render a quick, small draft image to AIR Show, the AIR framebuffer.

· In the display window, drag out a rectangle with the mouse to define the placement of the texture
map.  The texture map will exactly occupy the rectangle.  You do not need to draw a rectangle if you
want the texture to fill the entire window.

· Select Copy Decal Projection from the Edit menu in AIR Show.  This copies the projection
information as a text string of 16 numbers.

· Assign a shader that supports texture projection to the object.  Many of the shaders included with
AIR that generate 2D patterns provide texture projection.

· Assign the texture name to the texture map name parameter.

· Select the parameter for the transformation applied to the projected point and paste from the
clipboard by pressing Ctrl-V or by using the right mouse button pop-up menu.

· If the shader takes a projection type, set it to planar.

· Set the projection space to world.

· Render the same view again to verify that the texture is correctly positioned.

· Render the scene from another view to see that the texture remains in place.

Because the texture is projected in "world" space, the texture will remain in place if the camera moves.
The texture will not move with the object if the object moves.

You can use this technique to position any 2D pattern, not just those that rely on texture maps.  In all
cases the rectangle drawn in the display window defines the unit square in 2D texture coordinates.

11.2 Vector Textures

Beginning with release 3.0 AIR can use vector graphics files as texture maps with the aid of the
Vtexture DSO shadeop written by Alex Segal.  Vtexture can be downloaded from:

http://www.renderman.ru/vtexture/indexe.html

Copy the vtexture DLL or shared object file to the shaders directory of your AIR installation.

With Vtexture installed you can use a vector graphics file in Adobe Illustrator (.ai) or EPS format for any
shader parameter that expects a texture map.  When a file name with a .ai or .eps extension is
passed to the standard shading language texture() or environment() functions, AIR
automatically calls Vtexture with the appropriate parameters.

http://www.renderman.ru/vtexture/indexe.html


AIR User Manual309

© 2001-2014 SiTex Graphics, Inc.

See the Vtexture documentation for information on supported file formats and customizing the
operation of Vtexture.

11.3 PTEX:  Per-Face Texture Mapping

Air 11 and later support per-face texture mapping using the open-source PTEX library.

Overview

The PTEX library was developed to address several common problems with traditional 2D texture
mapping:

· Assigning "good" texture coordinates to complex models can be difficult and tedious
· Texture seams can be visible along discontinuities in the texture map
· Large numbers of texture files can create a significant IO bottleneck

The PTEX system addresses these concerns by eliminating UV assignment, providing seamless
filtering, and allowing an arbitrary number of textures in a single file.  A PTEX file stores a separate
texture map for each face in a mesh, with adjacency information to allow proper filtering across face
boundaries.  The PTEX library provides a texture cache for managing large numbers of textures
efficiently.

PTEX files can store 8-bit, 16-bit, float, and half precision data with an arbitrary number of channels.

Air PTEX Support

Air supports PTEX for the following applications:

· Surface and displacement textures for arbitrary convex polygon meshes
· Surface and displacement textures for subdivision meshes that are all triangles or all quads
· Cube-faced environment maps
· Texture baking for polygon meshes and subdivision surfaces with BakeAir

Using PTEX Textures

PTEX textures can be used with any shader that accesses texture maps using the standard texture
coordinates (s,t).  Just enable the following attribute to have Air automatically assign the necessary
face indices and texture coordinates:

Attribute "render" "boolean ptex" [1]

The PTEX library maintains its own texture cache.  The maximum memory used by the cache can be
set with

Option "limits" "ptexmemory" [100]

giving the memory limit in MB.

The maximum number of open PTEX files can be set with:

Option "limits" "ptexfiles" [100]

By default the texture coordinates generated by Air for Ptex textures will be the standard texture
coordinate pair, st.  You can change the name for ptex coordinates with:



2D Texture Mapping 310

© 2001-2014 SiTex Graphics, Inc.

Attribute "render" "string ptexcoordinates" "st"

Limitations:  Ptex support for subdivision meshes is limited to meshes that are all quads or all triangles

Using 3DCoat Textures

The PTEX files exported by the 3DCoat paint program appear to have the texture coordinates
swapped.  You can compensate for that in most Air surface shaders by setting the TextureSizeXY
parameter to 1 -1 and the TextureAngle to 90.

See Also

Baking PTEX Textures with BakeAir
PTEX web site:  http://ptex.us

12 3D Textures & Point Sets

3D textures store 3D point-based information.  Typically 3D textures are used to record time-
consuming shading computations for accelerated re-rendering.  Because 3D textures are accessed
using a location in a 3D coordinate system, they do not require surfaces to have the well-defined set of
texture coordinates required for 2D textures.

Many of AIR's advanced features allow expensive shading results to be saved to a file for later reuse,
including:

· Indirect diffuse illumination
· Occlusion
· Caustics
· Subsurface scattering

AIR also provides a general mechanism for creating and accessing 3D textures with the bake3d() and
texture3d() shading language functions.

3D Point File Formats

With version 8 AIR introduces a common set of file formats for all 3D point-based data.  AIR uses the
file name extension to determine the point file type.



AIR User Manual311

© 2001-2014 SiTex Graphics, Inc.

Air Point Cloud  .apc Unstructured point collection.  The basic format for storing 3D
point-based information.  The entire point set will be loaded at
once when accessed.

Air Point Map  .apm Point set organized into spacially continguous clusters that can
be loaded independently, allowing cached access to the point
data.  AIR can efficiently sample large point maps as 3D textures
using only a small fixed-size cache.

Air Brick Map  .abm 3D data resampled into a hierarchy of 3D cells containing the
original data filtered at different resolutions.  Like point maps,
sections of a brick map can be loaded on demand allowing
cached access.  Like 2D texture maps, the multiple levels of
detail in a brick map allow the map to be sampled over large
regions efficiently.  Loss of data inherent in the brick map
creation process may result in artifacts when used for fine
details.  Brick maps cannot be converted back into a point set.

RIB file  .rib Stores the point data as a RIB Points primitive.  If the file name
contains the text ascii, an ASCII RIB file will be written;
otherwise a more compact binary file is produced.

Text file  .txt A simple text format enabling data exchange with other programs
and formats.

Maya PDC  .pdc (read only)  Maya PDC file.  Maya 'position' data is automatically
converted to 'P' data for RIB.  'radiusPP' is converted to 'width' for
RIB.  If the PDC file has no radius info, a 'width' variable with
value 1 for all points is added.

Memory cache  .ram Creates a cache in-memory for use only during the current
rendering process.  Only useful for point sets created with the
collect() function.

Point File Manipulation

Version 8 of AIR includes a new Air Point Tool (airpt) for converting between the different point-based
formats and performing other manipulations of 3D point data.

Point Sets as Geometry

Air Point Clouds and Air Point Maps can be rendered as geometric primitives using the RIB Geometry
call:

Geometry "mycloud.apc"

A point set is represented converted into a RIB Points primitive, with file data attached as per-point
primitive data.  The normal point attributes such as point type are applicable.  When rendering an Air
Point Cloud file, AIR will load the entire point set the first time the set bounding box is encountered.
When rendering an Air Point Map, subsets of the point map are loaded on-demand.

Examples

The Bake3d surface shader shows how to bake general data to a 3D texture.  Source code for the
shader is located in $AIRHOME/shaders/src/surface.  Sample RIB files can be found in
$AIRHOME/examples/bake3d.



3D Textures & Point Sets 312

© 2001-2014 SiTex Graphics, Inc.

See Also:

Bake3d surface shader

13 Lighting

Lighting in AIR is accomplished with the use of light shaders.  Every light is produced with a light
shader.  Your plugin may include a special set of light shaders that mimic the behavior of the lights in
your modeling or animation program.  Most plugins also allow custom light shaders to be assigned to a
light.

Standard Lights

AIR comes with extended versions of the standard pointlight, spotlight, and distantlight shaders.
These shaders have been extended in the following ways:

· All support shadow-casting using ray tracing, shadow maps, or automaps
· Non-specular and non-diffuse behavior
· Extra output variables containing shadow values and unshadowed light colors for use in special

applications such as computing a shadow pass
· Fine control of shadow-casting objects with shadow-casting groups (for ray-traced shadows)
· Per-light channel numbers facilitating per-light output channels in surface shaders
· Most lights have an extended version that allows baking shadows and illumination with 2D or 3D

texture maps.

Special Lights

AIR includes additional light shaders for other purposes:

Area Lights:

arealight , arealight2, portallight, and texturedarealight shaders that can be attached
to geometric primitives to produce area lights.

Indirect Diffuse Illumination:

indirect shader for simulating indirect diffuse illumination.

Dome Lighting and Image-Based Lighting:

envlight and occlusionpass shaders for ambient occlusion and image-based lighting.

Caustics:

The caustic shader is used with photon mapping to produce caustic effects.

Photometric lighting:

The photometric_pointlight shader allows illumination to be defined using physical units or an IES
light profile

Sunlight



AIR User Manual313

© 2001-2014 SiTex Graphics, Inc.

The sunlight shader computes the color and direction for a sun-like light source based on
observer position, date & time, and atmospheric conditions.

Diffuse Only and Specular Only Lights

Most non-ambient light shaders can be configured to cast only diffuse light or only specular light by
setting the following parameters.

To make a light diffuse only (i.e., produce no specular highlights), set the __nonspecular parameter
of a light shader to 1.

To make a light cast only specular light but not diffuse light, set the __nondiffuse parameter of a
light shader to 1.

Optimizing Distance-Based Lights

Often the illumination emitted by a light decreases with distance from the light source until it becomes a
negligible part of the lighting at locations far from the light.  You can help Air to avoid evaluating a light
source at locations where it has little impact by setting the maxdist light attribute to the maximum
distance at which the light should be evaluated.  E.g.,

Attribute "light" "float maxdist" [1000]

13.1 Area Lights

Any primitive in a scene can be turned into a light source by attaching a suitable light shader to it.  E.g.,

AreaLightSource "arealight" 33

(Trim curves are ignored by area lights.)  In principle an area light casts light from the entire source
surface onto the current shading location.  Air provides two methods of simulating an area light:

Brute Force True Area Lights

One method of simulating an area light is to run the light source shader on a user-specified number of
sample locations distributed over the surface area of the light.  The number of samples is given by

Attribute "light" "integer nsamples" [n]

Shadows for an area light can be produced using ray tracing.  The arealight shader included with
Air can be used for brute force simulation of an area light.

Simulating Area Lights with areashadow()

Brute force simulation of area lights can be quite slow because it requires executing the light source
shader multiple times.  Air provides a shading language function called areashadow() that samples
the area light in a single function call.  The arealight2 shader included with Air uses the
areashadow function to provide faster area light simulation.  When using the arealight2 shader, the
light:nsamples attribute is not used.  Instead, the number of samples is set by a parameter in the
shader.

The areashadow() function is an approximation, and it only works well for simple geometry such as
a disk, square, or other convex polygon.



Lighting 314

© 2001-2014 SiTex Graphics, Inc.

Area Lights and Indirect Illumination

If indirect illumination is employed, area light geometry should be made invisible to indirect rays with

Attribute "visibility" "integer indirect" [0]

so that the area light is not included twice in the illumination calculations.

13.2 Shadows

Air provides three ways to produce shadows - ray tracing, shadow maps and automaps.  Each method
has advantages and disadvantages in terms of ease of use, speed, memory usage, and quality.

Ray-Traced Shadows

Ray tracing is one popular method for simulating shadows.  A ray is traced from the shading location to
a light source; the location is in shadow if the ray strikes any intervening objects.  Ray traced shadows
can easily accomodate colored shadows and shadows for semi-transparent objects.

Ray-traced shadows are easy to use - you only need to set the appropriate rendering options and
attributes.  However they have several drawbacks:

· Memory usage:  Ray tracing requires that the entire scene be kept in memory for the duration of
rendering, including parts of the scene that are off screen, which can use a lot more memory than
normal scanline rendering.

· Speed:  Ray-traced shadows can be slow for a large scene.

· Quality:  You will notice that the shadow edges are jagged.  Smoothing them requires casting extra
shadow rays which increases rendering time proportionally.

Shadow-Mapped Shadows

Shadows can also be simulated using shadow maps.  A shadow map is made by rendering an image
of a scene from the point of view of a light source and recording the depth of the nearest object at each
pixel location.  The renderer can use the depth information to determine if a given point is in shadow by
comparing its distance from the light source with the depth stored in the corresponding location in the
shadow map.

Shadow maps are slightly more difficult to use than ray-tracing, but they have other significant
advantages:

· Memory usage:  Shadow map size is independent of the complexity of a scene.

· Speed:  Shadow mapping is usually faster than ray tracing.  Shadow map access has a fixed time
cost, independent of scene complexity.  Air can usually render shadow maps very quickly since
shadow maps do not require as much shading computation as a color image.

· Reusability: Once rendered, shadow maps can be re-used as long as the relative positions of
lights and objects remain the same.

· Quality:  Shadow-mapped shadows have nice anti-aliased fuzzy edges.

Automaps

Automaps are a hybrid method of producing shadows, combining the ease-of-use of ray-traced



AIR User Manual315

© 2001-2014 SiTex Graphics, Inc.

shadows with the quality of shadow-mapped shadows.  For automapped shadows Air dynamically
creates tiles of a shadow map on-demand, and then uses those just as a normal shadow map to
compute shadow values.  Automaps require objects to be retained in memory just like ray tracing, so
they use more memory than ordinary shadow maps.  Automaps are also typically slower to generate
than shadow maps created with a separate rendering pass.

Occlusion

Ambient occlusion can be used to simulate soft shadows.  Air provides a special envlight light shader
that uses occlusion shadows with illumination from a surrounding environment.  Occlusion can also be
used for shadows with any standard light by supplying the special shadow name "occlusion".

13.2.1 Ray Traced Shadows

AIR supports the use of ray tracing to produce shadows.  One or more rays are traced from the light
source to the point being shaded, and the incoming light is modulated by the opacity of any intervening
objects.

To use ray traced shadows:

1.  Make objects that will cast shadows visible to shadow rays with:

Attribute "visibility" "integer shadow" [1]

By default all objects are invisible to shadow rays.

2.  Enable shadow ray tracing for one or more lights.  Your plugin may provide a special control to
enable ray-traced shadows for a given light.  For custom light sources, ray-traced shadows can be
enabled by providing the special shadow name "raytrace":

LightSource "spotlight" 3 "string shadowname" ["raytrace"]

This special name tells the renderer to cast shadow rays instead of looking for a shadow map.

Shadow Quality

The quality of ray-traced shadows can be improved by casting more shadow rays.  Most light shaders
provide a shadowsamples parameter that sets the number of rays that are traced to compute the
shadow value.

Shadow Acne and Shadow Bias

Occasionally some objects may exhibit incorrect self-shadowing, usually visible as small random dark
dots or "shadow acne".  A light shader typically provides a shadowbias parameter to help prevent
incorrect shadows by providing a small offset for the depth information in the shadow map.  Each
primitive also has a bias attribute, used for all ray tracing operations, that can be set with

Attribute "trace" "float bias" [0.01]

Soft Shadows

Most light shaders provide a shadowblur parameter that can be used to produce soft shadows by
expanding the region sampled by the shadow rays.  Shadow blur for ray-traced shadows is given as an
angle in radians for the range of directions in which to cast rays.



Lighting 316

© 2001-2014 SiTex Graphics, Inc.

Ray Traced Shadow Attributes

The following attributes can be set for each object:

Attribute "visibility" "integer transmission" [0]

When set to 1 an object will cast ray-traced shadows.  Making objects that do not cast shadows
invisible to shadow rays speeds up rendering.  Good candidates are objects functioning as a ground
plane or a surrounding volume.

Attribute "shade" "string transmissionhitmode" "type"

Tells the renderer how to treat an object when it is queried by shadow rays.  Possible types are:

primitive the primitive blocks shadow rays in
proportion to its Opacity attribute setting

shader the renderer should execute the surface
shader attached to the primitive to estimate
the opacity

For an object with a surface shader that computes a complicated opacity (e.g., a screen shader), you
will need to set the shadow type to "shader" to force evaluation of the shader.  Your plugin should
provide a control for this setting.

Attribute "trace" "integer motionblur" [1]

Moving objects with this attribute set will cast motion-blurred shadows.  Motion-blurred traced shadows
require 2 or more shadow samples or rays.  Use more rays for smoother blur.

Shadow Casting Groups

Many AIR light shaders provide extra parameters that allow shadow-casting to be restricted to a
particular group of objects:

"string shadowgroups" [""]
"string shadowattribute" ["user:shadowgroups"]

The first parameter takes a list of groups to test for ray-traced shadows.  This covers the common
case in which one wants to restrict shadows cast by a specific light, and all objects receive shadows
from the same groups.  The shadow-casting groups can be overridden for a particular object by
specifying a user attribute:

Attribute "user" "string shadowgroups" ["my custom groups"]

The second parameter above (shadowattribute) gives the name of the user attribute to check for a
custom shadow casting group.  By default all lights look for a custom shadow set in the same user
attribute.  By providing a different user attribute for each light, one can precisely specify for each object
and each light which objects are tested for shadows.

If the shadow group has the special value "null", no shadow rays will be traced and the object will not
receive shadows.

See Also



AIR User Manual317

© 2001-2014 SiTex Graphics, Inc.

Ray Tracing -> Optimizing Memory for Ray Traced Objects

13.2.2 Shadow Maps

Shadow mapping is a fast and flexible method of producing shadows.  A shadow map is generated by
storing depth information for a scene when it is rendered from the point of view of a light source.
When the scene is rendered normally, the light source can use the depth information to determine if a
point is in shadow.  Shadow-mapped shadows are usually faster than ray-traced shadows and have
smoother soft edges.

Using Shadow Maps

Support for a shadow map must be coded in a light shader.  If your plugin supports shadow maps, it
will likely include an appropriate shader and use it automatically.  Of the shaders included with AIR, the
pointlight, spotlight, distantlight, and uberlight shaders support a shadow map.

Soft Shadows

Most lights that support shadow maps provide a shadowblur parameter that can be used to blur the
shadow map lookup to produce softer shadow edges.  Shadow blur for shadow maps is specified as a
fraction of the total area of the shadow map.

Shadow Acne and Shadow Bias

Occasionally some objects may exhibit incorrect self-shadowing from a shadow-map, especially when
using large shadow blur values.  A light shader typically provides a shadowbias parameter to help
prevent incorrect shadows by providing a small offset for the depth information in the shadow map.

Transparency and Motion Blur

AIR shadow maps work with transparent and motion-blurred objects.  For higher quality shadows for
transparent objects, consider using fragment shadow maps.

Creating Shadow Maps

Your plugin should have an option to automatically create shadow maps for a light.

A shadow map is created by rendering a scene from the point of view of the light source and recording
depth information in an output file.  The depth information can be saved in a floating-point TIFF file
which AIR can use directly as a shadow map.  However, it is better to first convert the depth map to an
AIR shadow map with the MakeShadow RIB command or the mktex utility program.  An AIR shadow
map uses a tiled compressed format that allows AIR to efficiently cache shadow map requests and
minimize memory use during rendering.

Instead of rendering a depth file and then converting that to a shadow map, AIR allows a shadow map
to be rendered directly with the special shadow display driver.  Using the shadow driver avoids
creating a potentially large intermediate depth file.

Depth Map Values

AIR supports an optional parameter for the Hider command for choosing the type of depth values that
are stored in a shadow map:

Hider "hidden" "string depthfilter" ["midpoint"]

By default AIR writes a depth value that is the average of the two closest surfaces; this midpoint



Lighting 318

© 2001-2014 SiTex Graphics, Inc.

algorithm helps to minimize shadow artifacts caused by incorrect self-shadowing.  If a depthfilter value
of min is specified, the shadow map file will contain the nearest depth value at each pixel.

Shadow maps generated with the midpoint depth filter generally provide better shadows than maps
generated with the min filter.  However, midpoint shadow maps can cause artifacts where there is a
discontinuity in the second surface visible from the light which results in a large difference between
adjacent depth values.  AIR 6 and later provide two options that can be used to limit how much the
midpoint depth value differs from the min depth value.  The first option sets the maximum absolute
distance between the midpoint value and the nearest surface position:

Option "render" "float maxmiddistance" [1000000000]

The second option gives the relative position between the 2 closest surfaces of the value stored in the
depth map:

Option "render" "float midposition" [0.5]

The default value of 0.5 stores a depth value half way between the 2 nearest surfaces.  A value of 0.2
would produce a depth value closer to the nearest surface.

Cube-Faced Shadow Maps

Depth maps taken from multiple views can be combined into a single shadow map.  This capability can
be used to make a cube-faced shadow map for use with a point light.  The mktex utility will combine up
to 6 separate depth maps into a single shadow map.  E.g.,

mktex -shadow map.px map.nx map.py map.ny map.pz map.nz shadow.shd

The RIB MakeShadow command has been extended to accept an array of strings as the first
parameter, containing up to 6 depth maps to be joined into one shadow map.

AIR does not place restrictions on the views used for the depth maps that go into a multi-depth map
shadow map.  For a cube-faced map the FOVs of the depth maps should slightly overlap to prevent
gaps.

Another way to create a cube-faced map is to use the shadow display driver and its append parameter
to build a map.  Render the first sub-map to the output file, and then append each additional submap.
Sample files for creating and rendering with a cube-faced shadow map can be found in
$AIRHOME/examples/cfshadow

13.2.3 Fragment Shadow Maps

AIR 5 introduces fragment shadow maps that store additional coverage information and multiple depth
samples.  The additional information allows fragment maps to produce a better shadow estimate for
semi-transparent objects and objects that are thin or small such as hair or particles.

Fragment maps are enabled during the shadow map generation phase by giving the maximum number
of depth samples to store in each pixel of the shadow map:

Option "limits" "integer shadowmapdepth" [n]

AIR creates a fragment map instead of a normal shadow map when the shadowmapdepth is greater
than 1.  If a given pixel in the shadow map is covered by more fragments than allowed in the depth
map, AIR will remove and merge fragments until they fit in the map.

The minimum fragment map depth of 2 works well in many cases.  For scenes with complex visibility -



AIR User Manual319

© 2001-2014 SiTex Graphics, Inc.

many small or thin objects or many layers of transparency, a larger depth value of 4 to 8 may produce
better results.

Another option provides a quality storage tradeoff:

Option "render" "integer shadowmapformat" [0]

A format value of 0 will generate smaller maps with less precision which may render faster.  A format
value of 1 stores more precise depth and coverage information.

You may wish to increase the texture cache limit when rendering with fragment maps because they
tend to use more memory than conventional shadow maps.

Fragment Interpolation

AIR 8 introduces a new option to enable interpolation between fragments in a fragment shadow map:

Option "render" "integer lerpshadowmap" [1]

This option may reduce noise and jitter when render dense fur or hair.

13.2.4 Automaps

Automaps are shadow maps automatically created by AIR on-demand.  Automaps are currently
supported for spotlights, point lights, and directional/distant lights.

Using Automaps

To enable automapped shadows for a light, supply the special "automap" keyword as the shadow
map name.

An object must be visible to shadow rays for it to cast automapped shadows.  Your plugin should
provide a control to enable visibility to shadow rays.  Because automapped shadows use the "mid-
point" filtering method for depth values, objects such as a ground plane that lie behind shadow-casting
objects must also be visible to shadow rays.

Automap Size

The size of a light's automap is set with

Attribute "light" "integer automapsize" [1024]

Automap Coverage

For spotlights AIR looks for a light shader's coneangle parameter to determine the region covered by
the shadow map.

For distant lights, the coverage of the automap must be set with

Attribute "light" "float[4] automapscreenwindow" [left right top bottom]

where the 4 parameters define the screen window that would be used to generate a shadow map for
the light.

Automap Quality and Appearance

Automaps use the same high-quality filtering as shadow maps, producing smooth soft shadows.  The



Lighting 320

© 2001-2014 SiTex Graphics, Inc.

shadow blur and shadow bias parameters are interpreted as they are for shadow maps.

Automap Cache

Automaps are stored in a special cache that limits the total amount of memory consumed by all
automaps.  The cache size can be set with:

Option "limits" "integer automapmemory" [10000}

which sets the maximum cache size in kilobytes.

13.3 Indirect Lighting

Topics:

Introduction
Adding Indirect Light
Quality
Adaptive Sampling
Indirect Cache
Prepass
Shading
Environment
Radiosity Cache

Introduction

Indirect illumination is light that strikes a surface after being reflected, refracted or scattered by a
surface, in contrast to direct illumination that strikes a surface directly from a light source.

For efficient rendering, AIR provides separate mechanisms for simulating indirect diffuse illumination
- light which is scattered towards a surface by other surfaces - and caustics - light that is reflected or
refracted in a focused manner by other surfaces.  This section describes how to render indirect
diffuse illumination effects with AIR.

AIR uses a variation of the irradiance method for indirect illumination calculations.  AIR calculates
the incoming indirect light at a point by sampling the hemisphere of directions above the current
shading location using ray tracing.  Each ray contributes illumination from the surface it strikes or a
contribution from the indirect environment if no object is hit.

Adding Indirect Light

Many user interfaces for AIR provide special controls for enabling indirect illumination, often grouped
under a section called GI or Global Illumination.

Indirect lighting can also be added to a scene manually as follows:

· Add an indirect light source to a scene.

· Make objects that contribute indirect illumination visible to "indirect" rays with

Attribute "visibility" "indirect indirect" [1]



AIR User Manual321

© 2001-2014 SiTex Graphics, Inc.

Quality

The main control over the quality of the indirect illumination results is the number of rays cast, which
can be set with the following attribute:

Attribute "indirect" "integer nsamples" [256]

More rays produce more accurate and smoother results at the expense of longer rendering time.

Sometimes it is only important to capture the indirect light from objects that are nearby the current
shading location.  The following attribute can be used to restrict the distance to search for objects
that contribute indirect light:

Attribute "indirect" "float maxhitdist" [100000]

Shorter distances can reduce rendering time by reducing the number of objects tested for
intersection with each indirect ray.

The following option limits the maximum number of bounces light can take from a light source to a
point and appear in the global illumination calculations:

Option "indirect" "integer maxbounce" [1]

Lower values take less time and use less memory.  Since most of the indirect illumination is usually
the result of the first bounce, a value of 1 is usually sufficient to produce a noticable effect.

Air 14 introduces a new option to set the quality of area light sampling for indirect light:

Option "indirect" "arealightquality" 0

gives a multiplier applied to the nsamples value for each light.  This option replaces the old behavior
of always using only 1 sample for each area light.

Adaptive Sampling

Adaptive sampling is a method of accelerating indirect illumination.  When adaptive sampling is
enabled, AIR casts fewer rays initially and then additional rays only in regions where the initial ray
casts indicate high variation.  Adaptive sampling can be enabled with

Attribute "indirect" "integer adaptivesampling" [1]

The maximum variance allowed before additional rays are cast can be set with

Option "indirect" "float maxvariance" [0.1]

Indirect Cache

Because calculating indirect light at every shading location can be prohibitively slow, AIR provides an
efficient caching mechanism that stores previous computation results and allows them to be re-used
at new locations.  Two attributes affect the quality of indirect illumination results using the cache:

Attribute "indirect" "float maxerror" [0.0]
Attribute "indirect" "float maxpixeldist" [20]

The maxerror attribute sets the maximum error that is allowed in any one estimate of the local
indirect illumination when reusing samples from the cache.  Lowering the maximum error causes the



Lighting 322

© 2001-2014 SiTex Graphics, Inc.

renderer to take new samples more often.  Setting maxerror to 0 disables the indirect cache, forcing
AIR to compute a new indirect value at every shading location.  A reasonable starting value for using
the occlusion cache is 0.2.

The maxpixeldist attribute gives the maximum distance in pixels over which AIR will re-use a
given sample.  Lower values cause more samples to be taken more frequently.

The indirect illumination cache AIR calculates can be saved to a file and re-used when a scene is re-
rendered.  As long as no object or light moves, the same values will still be valid.  If the camera
position changes, AIR may need to calculate some new samples, but you can still save a lot of time
by giving it an initial set of samples.  To enable cache writing, use:

Option "indirect" "string savefile" [filename]

Load a cache file for re-use with:

Option "indirect" "string seedfile" [filename]

Although AIR uses ray tracing to generate new illumination samples, it does not need to trace rays to
calculate indirect illumination using a seed file.

Using a Cache with Moving Objects

An indirect illumination seed file can be re-used in an animated sequence as follows:

1. Set the maxhitdist indirect attribute to a reasonably small value for all primitives.

2. Render the scene with all moving objects removed to create an indirect seed file.

3. Mark all animated objects as "moving" with

Attribute "indirect" "integer moving" [1]

4. Enable the following option:

Option "indirect" "moving" [1]

5. Render each frame using the seed file.

AIR will cull samples from the indirect illumination cache in the vicinity of moving objects based on
the maxhitdist attribute of the objects.  New samples will be generated in those areas.

Prepass

In some cases indirect illumination results computed using indirect caching may appear splotchy due
to the abrupt way in which new samples are added to the cache.  AIR supports an optional automatic
pre-pass that records indirect cache values prior to rendering the final image, resulting in smoother
indirect illumination.  The prepass is enabled with

Option "indirect" "integer prepass" [1]

AIR can use different quality settings on the prepass than the second pass.  Using higher quality
parameters on the first pass results in a better final image.  A scaling factor for the maxerror and
maxpixeldist attributes is given by

Option "indirect" "float prepassfactor" [0.5]



AIR User Manual323

© 2001-2014 SiTex Graphics, Inc.

If you want to use the same quality settings on both passes (the behavior of AIR prior to release 2.7),
set this option value to 1.  Increasing the prepassfactor will save rendering time.

Objects that are not illuminated by the indirect light source do not need to be evaluated during the
prepass.  Such objects should be tagged with the following attribute:

Attribute "indirect" "integer prepass" [0]

AIR's indirectchannels light shader can track light channels through indirect bounces.  In order for
the prepass to work properly with channel tracking, AIR must be told to record the per-channel
indirect information with the following option:

Option "indirect" "string prepasschannels" "__lights"

Synchronization

Air 13 introduces a new option to force Air to wait until an indirect or occlusion prepass has finished
before rendering the final pass:

Option "render" "syncprepass" [1]

This option provides a solution in cases where a bucket has not finished computing in the prepass
when it is rendered in the final pass.  Enabling this option will in general increase rendering time,
since it forces all threads to wait until the last thread finishes the prepass.  The option is enabled by
default.

Prepass and Transparency

During the prepass the renderer only generates indirect illumination, saving time by not running the
full set of shaders at each pixel.  The renderer will calculate indirect light on the frontmost surface at
each point, and for points behind that if the surface's opacity parameter (Os) indicates it is
transparent.  Some shaders modify the surface transparency in complex ways not tied to the opacity
surface attribute.  To force the renderer to generate samples behind those objects, set the surface
opacity to a non-opaque value, even though it is isn't used by the surface shader.

Prepass and Reflections

Some surfaces have crisp reflections that may clearly reflect indirect illumination in other parts of the
scene.  To obtain the best results you may also need to precompute indirect values at those
reflected locations by tagging a reflective object with the following attribute:

Attribute "indirect" "integer reflective" [1]

Prepass Groups

The objects that will contribute indirect illumination can be restricted to members of a list of groups
by providing the following option:

Option "indirect" "string prepassgroup" "list of groups"

Shading for Indirect Illumination

AIR calculates the incoming indirect light at a point by sampling the hemisphere of directions around
the surface normal using ray tracing.  Each ray contributes illumination from the surface it strikes.
AIR provides custom attributes for simplifying and thereby accelerating the shading performed to
determine a primitive's contribution to indirect illumination:



Lighting 324

© 2001-2014 SiTex Graphics, Inc.

Attribute "indirect" "string shading" [type]
Attribute "indirect " "float strength" [1]
Attribute "indirect" "color averagecolor" [-1 -1 -1]
Attribute "indirect" "string averagecolor_spd" ""

The "indirect:shading" attribute determines the type of shading performed when a surface is
intersected by an indirect ray.  Possible values are:

shade Execute the surface's assigned shaders
to determine the reflected color.

matte Use a matte surface shader, with the
color taken from
strength*averagecolor.
This is the default setting.

constant Use a constant surface shader, with the
color taken from
strength*averagecolor.

If the "indirect:averagecolor" attribute is not set,  the renderer will use the standard color
attribute for the surface (Cs) as the average color.

Matte shading can save a considerable amount of time if a primitive has a complicated surface
shader assigned.  All that's required is an estimate of the average reflectance/color over the surface.

Constant shading saves even more time because the renderer doesn't have to execute the light
shaders assigned to the surface to calculate its contribution to indirect illumination.  For constant
shading, the product of the averagecolor and strength attributes should be a rough estimate of
the average color (including lighting) of the surface.

Environment

In Air 11 and later, indirect rays that miss all objects return a color based on the current environment
shader(s) assigned to the scene, if any.  Air 12 introduces a new option to automatically cache the
environment for indirect queries with:

Option "indirect" "environmentcache" [1]

Using the cache typically produces smoother results with shorter rendering times.

If no environment shader is defined, the returned color is based on the following legacy options.  The
default returned color is set with

Option "indirect" "color background" [0 0 0]

Alternatively, the background can be defined using an environment map specified with the following
options:

Option "indirect" "string envname" [""]
Option "indirect" "float envstrength" [1.0]
Option "indirect" "float envblur" [0.0]
Option "indirect" "integer envsamples" [4]
Option "indirect" "string envspace" ""



AIR User Manual325

© 2001-2014 SiTex Graphics, Inc.

Radiosity Cache

Air 13 introduces a new radiosity cache that accelerates indirect lighting computations by storing and
reusing the shading results for indiret ray hits.  The cache can be enabled on a per object basis with
the following atttribute:

Attribute "indirect" "radiositycache" [1]

When enabled, Air stores the result of shading each indirect ray hit with the associated polygon.  If
that polygon is hit by another indirect ray, the saved shading result is re-used (instead of evaluating
the shaders at the new hit point).

By default one indirect shading sample is stored with each polygon.  Large polygons can be shaded
more accurately by setting a max size for each indirect shading sample with

Option "indirect" "radiositysize" n

where n gives the maximum radius of each shading point.  Polygons larger than the specified size
store multiple indirect samples for more accurate shading (at the expense of greater render time and
memory use).

By default the radiosity size is treated as an absolute measure in "world" space.  The size can
instead be measured in pixels with the following option:

Option "indirect" "string radiositysizespace" "raster"

To save time and memory, Air will reduce the detail in the radiosity cache at higher bounce levels
when the following option is enabled:

Option "indirect" "reduceradiosityquality" [1]

Caveats: The cache won't produce accurate results if both sides of a surface are visible.

 See Also

indirect light shader
Caustics
Ray Tracing -> Optimizing Memory for Ray Traced Objects

13.4 Ambient Occlusion

Ambient occlusion refers to the extent to which a shading location is blocked or occluded by
surrounding objects.  It provides a good estimate of the extent to which an object is "shadowed" by
surrounding objects with respect to an encompassing environment, such as the sky in an outdoor
scene.  Ambient occlusion is a faster alternative to computing indirect illumination for scenes where the
soft lighting effects of hemispherical or "dome" lighting are desirable but color bleeding and bounce
lighting effects aren't important.

AIR can compute ambient occlusion using ray tracing, depth maps, or point clouds.

Shaders

AIR includes four shaders that use ambient occlusion, which is encapsulated in the shading language



Lighting 326

© 2001-2014 SiTex Graphics, Inc.

function occlusion().

The envlight and massive_envlight light shaders provide a "dome" or sky lighting effect with
occlusion used for shadowing.  The massive_envlight shader has parameters for most properties
affecting ambient occlusion.  This shader is a good choice when not using AIR's occlusion cache
feature.  With the envlight shader most occlusion properties are controlled with AIR attributes.   This
shader is recommended when using the occlusion cache feature.

The occlusionpass and massive_occlusionpass surface shaders set the surface color to the
occlusion value, allowing a separate ambient occlusion pass to be rendered and used for compositing.
The occlusionpass shader is recommended when using an occlusion cache.  The
massive_occlusionpass shader provides fairly complete controls for rendering occlusion without an
occlusion cache.

Examples

Examples using occlusion can be found in

$AIRHOME/examples/occlusion.

13.4.1 Ray-Traced Occlusion

Ray traced occlusion estimates the occlusion at a location be casting shadow rays distributed over a
cone of directions (usually a hemisphere) testing for shadowing or occluding objects.

Many applications and plugins provide a special interface for enabling and configuring ray-traced
ambient occlusion, often grouped with other controls under a GI or Global Illumination dialog.

You can also add ambient occlusion to a scene manually by either:

1. Assigning an occlusionpass or massive_occlusionpass surface shader to all objects
2. Adding an envlight or massive_envlight light shader to the scene.

Because traced occlusion casts shadow rays to estimate occlusion, any objects that contribute to
occlusion must be made visible to shadow rays.  A plugin may provide a control for enabling traced
shadow visibility, or visibility to shadow rays can enabled with

Attribute "visibility" "integer transmission" [1]

Occlusion Quality

The main control over occlusion quality is the number of rays cast to estimate occlusion.  Some
shaders (such as massive_envlight and massive_occlusionpass) provide a parameter for setting the
number of rays to cast for occlusion.  Shaders that do not provide such a parameter will inherit the
number of rays from the corresponding indirect attribute:

Attribute "indirect" "integer nsamples" [256]

Using more rays will produce more accurate and smoother ambient occlusion results at the cost of
longer rendering times.  A useful guideline when making adjustments is to increase or decrease the
number of rays by a factor of 2.

Often it is only important to capture the occlusion resulting from objects that are nearby the current
shading location.  The following attribute can be used to restrict the distance to search for occluding
objects:



AIR User Manual327

© 2001-2014 SiTex Graphics, Inc.

Attribute "indirect" "float maxhitdist" [100000]

Using as low a max hit distance value as possible can greatly accelerate occlusion estimation by
limiting the number of potentially occluding objects.  Using an appropriately low hit distance can also
allow occlusion to be useful in interior scenes.

Adaptive Sampling

Adaptive sampling is another method of accelerating ambient occlusion.  When adaptive sampling is
enabled, Air casts fewer rays initially and then additional rays only in regions where the initial ray casts
indicate high variation.  Adaptive sampling can be enabled with

Attribute "indirect" "integer adaptivesampling" [1]

The maximum variance allowed before additional rays are cast can be set with

Option "occlusion" "float maxvariance" [0.1]

Occlusion Caching

Because tracing shadow rays to estimate occlusion is an expensive operation, Air allows occlusion
values to be saved and re-used just as indirect illumination samples can be.   Caching of occlusion
values is controlled with the optional maxerror and maxpixeldist parameters passed to the occlusion
function(), or if those are not provided, by the corresponding indirect attributes:

Attribute "indirect" "float maxerror" [0.2]
Attribute "indirect" "float maxpixeldist" [20]

If maxerror is 0, Air will not cache occlusion values, and occlusion will be recalculated at every
shading location.  Rendering without a cache is obviously slower, but it can produce superior results.
Other values of maxerror give the maximum error allowed in an occlusion estimate before a new
sample is generated.

The occlusion cache can be saved to a file with

Option "occlusion" "string savefile" filename

and later re-used with

Option "occlusion" "string seedfile" filename

Re-rendering with a seed file does not require ray tracing.  The occlusion cache can be saved to any of
the 3D point file formats supported by Air.  For normal re-rendering with a saved cache, the Air Point
Cloud format (.apc) is recommended.

Occlusion Prepass

Air supports an optional automatic pre-pass that records occlusion samples for re-use on a second
pass, resulting in a smoother final image.  The prepass is enabled with

Option "occlusion" "integer prepass" [1]

Air can use different quality settings on the prepass than the second pass.  Using higher quality
parameters on the first pass results in a better final image.  A scaling factor for the maxerror and



Lighting 328

© 2001-2014 SiTex Graphics, Inc.

maxpixeldist attributes is given by

Option "occlusion" "float prepassfactor" [0.5]

Normally you will not need to change this option.

Air 13 introduces a new option to force Air to wait until an indirect or occlusion prepass has finished
before rendering the final pass:

Option "render" "syncprepass" [1]

This option provides a solution in cases where a bucket has not finished computing in the prepass
when it is rendered in the final pass.  Enabling this option will in general increase rendering time, since
it forces all threads to wait until the last thread finishes the prepass.  The option is enabled by default.

Screen Space Cache

By default Air stores the cache as a set of 3D point samples.  AIR 6 introduces a new screen-space
cache mode that can be enabled by setting the maxpixeldist attribute to 0 and maxerror>0.  In this
mode Air will store one occlusion sample per pixel for possible re-use.  This produces an appearance
similar to rendering without a cache in less time.  It also decouples the frequency of occlusion sampling
from the shading rate.

Sampling the Environment

Air 11 introduces a new option to sample the current scene environment for unoccluded rays.  The
envlight shader provides a sampleenvironment parameter that enables this new mode.  When the
occlusion prepass is enabled, you should also enable environment sampling during the prepass with:

Option "occlusion" "prepasssampleenvironment" [1]

When used with the occlusion cache, environment sampling can be noticably faster (and more
accurate) than the old method of querying an environment map based on the average unoccluded
direction vector.

See Also

Ray Tracing -> Optimizing Memory for Ray Traced Objects
Lighting -> Indirect Lighting

13.4.2 Depth-Mapped Occlusion

Occlusion maps offer an alternative to ray tracing for producing ambient occlusion estimates and dome
lighting effects.

An occlusion map is basically just a collection of individual shadow maps.  The key difference from an
ordinary shadow map or a cube-face shadow map is that an occlusion map query returns the
combined shadow results for all the shadow maps.  Querying an occlusion map created with shadow
maps from a range of directions around an object can be used to estimate ambient occlusion.

Creating an Occlusion Map

Method 1:

Combine multiple depth maps into an occlusion map with the RIB MakeShadow command:



AIR User Manual329

© 2001-2014 SiTex Graphics, Inc.

MakeShadow [
  "shadow1.z"
  "shadow2.z"
  "shadow3.z"
  "shadow4.z"
      ...
  "shadowN.z"] "occlusion.sm"

Method 2:

An occlusion map can be built incrementally using the "append" parameter of the AIR shadow
display driver.  The first shadow map is rendered with a Display call such as:

Display "occlusion.sm" "shadow" "z"

Subsequent shadow maps use

Display "occlusion.sm" "shadow" "z" "float append" [1]

to add to the occlusion map.

Using an Occlusion Map

The occlusion() function accepts an occlusion map as the first parameter.  The optional bias, blur,
and samples parameters function as they do for a shadow map.  The envlight and
occlusionpass shaders included with AIR both work with occlusion maps.  For example, to add an
environment light with an occlusion map, you might use:

LightSource "envlight" 9 "string mapname" "occlusion.sm"

When using an occlusion map, you may need to increase the texture cache size for good performance.
E.g.,

Option "limits" "texturememory" [30000]

will increase the cache size from the default of 10MB to 30MB.

13.4.3 Point-based Occlusion

Air 10 introduces point-based ambient occlusion which computes occlusion using a 3D texture file or
point cloud.

Step 1:  Baking a 3D point file

The first step to utilizing point-based occlusion is to generate a suitable 3D point file.

The 3D point file should be saved as an Air Point Cloud (.apc) file.  It is very important that the 3D point
file include all occluding surfaces in the scene, not just those that are visible to the camera.

The simplest way to produce such a point set is to use the bake3d surface shader included with Air in
"collect" mode, which uses the same surface-sampling capability employed by Air's SSS feature.  To
do that, set the BakeRadius parameter to the maximum radius or size for any point in the cloud.
Smaller values produce a more accurate but larger point set.

Set the BakeMap parameter to the name of the 3D texture file, with a .apc extension.

The point cloud only needs basic position, normal, and width information for each point.  To minimize



Lighting 330

© 2001-2014 SiTex Graphics, Inc.

the size of the point data, set the BakeChannels parameter to the empty string to avoid writing any
additional channels.

To use the collect mode, all surfaces also need to be tagged members of the same point set with the
following attribute:

Attribute "pointset" "handle" "occluders"

Here is a complete rib snippit that can be used to bake an exported rib file:

Surface "bake3d"
  "string BakeMap" "occlusion.apc"
  "string BakeChannels" ""
  "float BakeRadius" [0.1]

Attribute "pointset" "handle" "occluders"

Option "render" "commands" "-Surface"

The last line overrides all other surface shaders in the rib file.  Save the above to a texture file, called
say bakeocc.rib, then pass that file to Air prior to the main scene file:

air bakeocc.rib myscene.rib

Step 2:  Rendering with point-based occlusion

The 3D point file representing occluding surfaces in the scene can be used to produce occlusion with
the occlusionpass surface shader or the envlight light shader.

Set the mapname parameter to the file name of the 3D texture.

Adjust the mapbias parameter to prevent incorrect self-occlusion.

Control quality vs speed with the maxsolidangle parameter.  To accelerate the occlusion estimate,
Air groups points that are far away from the current shading location and treats them as a single
occluder.  The maxsolidangle parameter gives the maximum solid angle in radians that an
approximate occluder may occupy before Air substitutes a more detailed representation.  Larger values
produce a coarser occlusion result with lower render times.

Here's a complete rib snippit for rendering an occlusion pass using a 3D point file:

  Surface "occlusionpass"
    "string mapname" "occlusion.apc"
    "float mapbias" 0.1
    "float maxsolidangle" 0.05

  Option "render" "commands" "-Surface"

Save the above as occpass.rib, then render with

air occpass.rib myscene.rib

Point-based occlusion may be faster than traced occlusion for very complex scenes.  For simpler
scenes, point-based occlusion may be slower than simple ray traced occlusion.



AIR User Manual331

© 2001-2014 SiTex Graphics, Inc.

13.5 Image-Based Lighting

An environment map can be used to illuminate a scene with either indirect diffuse illumination or
ambient occlusion.  In either case, the source image should first be converted to an AIR environment
map with AIR's texture conversion tools.

Converting a Light Probe Image

A light probe is a popular method of recording the lighting in an environment by photographing a
reflective ball placed in the environment.  By using the light information contained in a light probe
image, one can make a computer-generated object look like it is being "lit" in that environment.  For
best results, the light probe image should be a high-dynamic range image, which captures the full
range of the light in the environment.

Light probe images are often stored in an "angular" format or a mirrored ball format.  Images in these
formats can be converted for use with AIR by the mktex or mktexui utilities.  For mktexui:

· Start mktexui
· Select the source image.
· Set the Map Type to Angular Map or Mirror Ball depending on how the source image was generated.

Image-based lighting usually only rquires a small environment map.  You can set the output size to
reduce a large source image.

· Set the Output Size to 256 128.

The texture converter also allows the orientation of the environment map relative to the scene to be
altered using the Rotate 3D controls.

· Set the Output Directory and click the Make Map button.

IBL with Indirect Diffuse Illumination

If indirect diffuse illumination is being used in a scene, the IBL environment map can be added as the
background map for the indirect diffuse lighting calculations with:

Option "indirect" "string envname" [""]
Option "indirect" "float envstrength" [1.0]
Option "indirect" "float envblur" [0.0]

Indirect rays that miss all objects in the scene will take their color from the environment map.  The
envstrength option can be used to scale the environment map intensity, while the envblur
parameter adds blur to the environment map lookup.

IBL with Ambient Occlusion

Image-based lighting can also be accomplished using ambient occlusion with the envlight or
massive_envlight light shaders.  Add a light source with the envlight shader to your scene, and
set the envname parameter to the name of the environment map.

Example:  an example can be found in $AIRHOME/examples/hdribl



Lighting 332

© 2001-2014 SiTex Graphics, Inc.

13.6 Photometric Lights and IES Profiles

AIR 10 and later can utilize IES light profiles to simulate the illumination properties of specific light
fixtures.  IES light simulation requires the new IES file reader and the new photometric_pointlight light
shader included in AIR 10.

IES Profiles

IES light profile files represent the distribution of light from a fixture as a "photometric web" of
measured intensity values over a range of directions.  IES file support is implemented as an image
reader that converts the directional intensity information into a lat-long environment map that can be
queried using the standard shading language environment() function.  The output of the IES reader
is a single-channel file at float precision storing the interpolated light intensity in candela.

Viewing IES profiles

An IES file can be viewed in AIR Show just like images in any other image format supported by AIR.
By default AIR Show assumes a single-channel file of float precision is a shadow map and applies
some non-standard display processing to the image.  You can turn off this special processing in AIR
Show 4.03 or later by disabling the Detect shadow map option in the Options menu prior to loading
an IES file.

Photometric lighting

The new photometric_pointlight shader in AIR 10 allows an IES profile to be used to illuminate a scene
as follows:

1.  Set the iesname parameter to the file name of the IES profile.

2.  Optionally use the iesrotatex, iesrotatey, and iesrotatez parameters to rotate the
orientation of the profile.

3.  Set the sceneunitsize parameter to size of one unit in world space in meters.  E.g., if your scene
is modeled in centimeters, sceneunitsize should be 0.01

4.  Set illuminanceunity to the illuminance (in lux) corresponding to a non-physical light source
intensity of 1.  This value is used as a divisor for the light's emitted intensity; larger values will cause
the light to appear dimmer.

Notes

The illuminanceunity parameter tells the renderer how to map the physical light data into a
rendering environment that lacks a physical camera model and may include non-physical lights.  All
lights in a scene (and in any scenes that will be compared) should have the same
illuminanceunity value.  To make it easier to specify a common value, the photometric_pointlight
shader looks for a unity value in the following user option:

Option "user" "float illuminanceunity" [200]

When the user option is present in the scene rib file, the illuminanceunity parameter value is
ignored.

Similarly, the photometric_pointlight shader looks for the scene unit size in

Option "user" "float sceneunitsize" [0.01]  # cm to m

and ignores the sceneunitsize parameter value when the option is detected.



AIR User Manual333

© 2001-2014 SiTex Graphics, Inc.

Photometric illumination without an IES profile

When the photometric light shader is used without an IES profile, the light intensity can be specified in
physical units by setting the intensityunit parameter to one of the following supported values:

none intensity acts as a simple scalar with no conversion

candela intensity is divided by illuminanceunity

lumen intensity is converted to candela by dividing by 4 PI

watt intensity is converted to lumen using lumensperwatt value

When the watt unit is selected, the lumensperwatt parameter should be set appropriately for the
type of illuminant (e.g., 8-17 for an incandescent bulb, 60-72 for a compact flourescent).

13.7 Caustics

Caustics are illumination effects from light that has been reflected or refracted in a focused manner
onto a surface. AIR simulates caustics using photon mapping.

Producing Caustics

Producing caustics requires several steps:

1. Add a caustic light source to the scene:

LightSource "caustic" 99

Turn the light on for any surfaces that are to receive caustics, and off for all other surfaces.

2. Set the number of photons to trace for each light that is to produce caustics:

Attribute "light" "integer nphotons" [100000]

3. Make primitives that are to receive or produce caustics visible to indirect/photon rays with

Attribute "visibility" "integer indirect" [1]

4. For each primitive that is to produce caustics by reflecting or refracting light, set the reflective color,
refractive color, and refraction index for caustics:

Attribute "caustic" "color specularcolor" [0 0 0]
Attribute "caustic" "color refractioncolor" [0 0 0]
Attribute "caustic" "float refractionindex" [1]

For caustics to be visible, there must be at least one object that is lit by the caustic light and at least
one object that reflects or refracts photons.

The specularcolor and refractioncolor attributes determine what happens to photons that
intersect a surface.  Photons will be reflected, refracted or absorbed in proportion to (respectively), the
average intensity of specularcolor, the average intensity of reflectioncolor, and 1 minus the
sum of the average intensities.  The sum of specularcolor and reflectioncolor should be less
than or equal to 1.  If the sum is greater than or equal to 1, no photons will be stored on that surface
and no caustics will be visible.

Example:



Lighting 334

© 2001-2014 SiTex Graphics, Inc.

Attribute "caustic" "color specularcolor" [.4 .4 .4]
Attribute "caustic" "color refractioncolor" [.25 .25 .25]

In this case, 40% of incoming photons (light) would be reflected, 25% would be transmitted, and 35%
would be stored and visible as part of the caustic illumination.

When simulating caustics AIR shoots photons for all lights to build the photon map prior to beginning
the main rendering pass.  No separate prepass is required for caustics.

Caustic Quality

The following attributes affect the quality of caustic results.

Attribute "caustic" "float maxpixeldist" [10]

Gives the maximum distance (in pixels) over which to gather photons for a caustic estimate.  Larger
values produce smoother results and require that fewer photons be used overall.

Attribute "caustic" "integer ngather" [75]

gives the minimum number of photons to gather for a caustic estimate.  No caustics will appear at
locations where insufficient photons are found within the distance given by the maxpixeldist attribute.

Recycling Photons

The photon map used for calculating caustics can be saved to a file with:

Option "caustic" "string savefile" "filename"

and re-used with

Option "caustic" "string seedfile" "filename"

Caustics can be saved and loaded from any 3D point format supported by AIR.  The recommended
point format for caustics is an AIR Point Cloud (extension .apc).

Loading a seed file does not preclude shooting additional photons.  If you want to use only the photons
in a seed file, be sure to set the number of emitted photons for all light sources to 0.

Note that while shooting photons requires ray tracing, rendering caustics with only a seed file does not.
For example, a seed a file could be created using a small subset of objects from a larger scene and re-
used for the entire scene.

Dispersion

AIR can simulate the effects of dispersion (e.g., prism-like effects) in the photon map.

Attribute "caustic" "float dispersion" [0]

gives the variation in the index of refraction over the visible spectrum.  E.g., if the following caustic
attributes were defined

Attribute "caustic" "float refractionindex" [1.5]
Attribute "caustic" "float dispersion" [0.3]



AIR User Manual335

© 2001-2014 SiTex Graphics, Inc.

The index of refraction would range between 1.2 and 1.8.

An example can be found in

$AIRHOME/examples/effects/prism.rib

13.8 Subsurface Scattering (SSS)

AIR provides fast simulation of the subsurface scattering effects common in soft or partially translucent
materials such as skin and marble.  Subsurface scattering is implemented as a new shading language
function, subsurfacescatter(), and a capability to store and query a collection of points distributed
over a group of surfaces.

Using Subsurface Scattering

Enable subsurface scattering for an object as follows:

1.  Make all primitives that make up the object part of the same point set as defined with

Attribute "pointset"
  "string handle" "myobject.pts"

The handle name should be a valid file name if you wish to save the point cache to a file.

2.  Assign a shader that uses the subsurfacescatter function, such as the VTranslucent, VSkin, or
VTranslucentMarble shaders included with AIR.

3.  Set the shader parameters appropriately for your object:

Scattering Distance

The most important parameter to set is the one that controls the scattering distance.  Most shaders
provide one parameter for setting the distance for the red, green, and blue color components, and
another parameter to scale the distance.

Use the ScatterDistance parameter to define the scatter properties for a particular type of material,
e.g., skin.  A table of real-world values can be found in Jensen et al "A Practical Model for
Subsurface Light Transport" in the SIGGRAPH 2001 Proceedings.The mean scattering distance can
be calculated from the reduced scattering (sigma_s) and absorption coefficients (sigma_a):

msd = 1/sqrt(3*(sigma_s+sigma_a)*sigma_a)

The default scatter distances in the shaders provided with AIR are all in units of millimeters.  Use the
ScatterDistanceScale parameter to adjust the distance to the scale of your object.  Larger distances
produce more blur and generally take less time to render.

Subsurface Reflectance

This parameter sets the nominal reflectance for subsurface scattering.  Real-world values can be
found in Jensen et al.  Although it is possible to control the color of an object by changing this
parameter, the net effect in interaction with the scattering distance parameter can be difficult to
predict.  Instead, use the primitive's color attribute or other color options in the shader to tweak the
overall color, with the SubsurfaceReflectance value set for a particular material type.

When a subsurface scattering object is first encountered, AIR calculates and stores a set of shaded
points distributed over the object's surface. You may notice a delay as AIR performs these



Lighting 336

© 2001-2014 SiTex Graphics, Inc.

computations.  After the point cache is generated, rendering should proceed relatively quickly.

AIR shades points in the point cache from the "outside" of the object as determined by the current
orientation.  If your object looks unlit with subsurface scattering, try reversing the orientation of the
object.

Subsurface Quality

To save rendering time AIR aggregates points in the SSS cache that are far away from the current
shading location.  If this optimization is performed too aggressively, it can result in rendering artifacts in
the form of spots of darker color in the subsurface scattering result.  The max error tolerance for this
optimization can be set with:

Option "render" "float subsurfacetolerance" [0.005]

Setting the tolerance to 0 disables the optimization entirely.

Saving and Re-using a Subsurface Cache

The point cache used to accelerate subsurface scattering can be saved to a file using the filemode
attribute:

Attribute "pointset" "string filemode" "w"

The point set will be saved to the file name given by the point set handle.

To re-use a point set on a subsequent render, set the filemode to read with:

Attribute "pointset" "string filemode" "r"

Subsurface scattering point sets can be saved in any of the 3D point formats supported by Air.

Multithreading

In AIR 10 and later versions subsurface cache generation is multithreaded for better performance.
Multithreading for SSS cache generation can be disabled with

Option "render" "integer sssmultithread" [0]

Automatic Point Set Handles

Air 11 introduces a new option to automatically generate a point set handles:

Option "render" "sssautocache" [1]

When this option is enabled, Air generates a unique point set handle for each primitive whose surface
shader contains a call to the subsurfacescatter function.  MayaMan users should use this option with
caution:  MayaMan shaders always include a subsurfacescattering() call, even when that option is not
used, which will cause Air to retain objects for SSS cache generation when this option is enabled.

Custom Functions with collect()

If the builtin subsurfacescatter() function doesn't meet your needs, you can write your own



AIR User Manual337

© 2001-2014 SiTex Graphics, Inc.

subsurface scattering function using the collect() statement, which exposes the underlying point
set cache and query capability used by subsurfacescatter.  For an example of a custom subsurface
scattering solution, see

$AIRHOME/examples/surbsurface/collectss

Naturally collect() is good for many other exotic effects as well.

See Also:

3D Textures & Point Sets
VTranslucent surface shader
VSkin surface shader

13.9 Baking Shadows and Illumination

Baked Shadows

The new distantlight_baked, pointlight_baked, spotlight_baked, and envlight_baked shaders extend the
corresponding light shader with a few new parameters for baking.  The two most important are:

string bakemode - bake mode
string bakemap - name of bake map

Bake Modes

The following bake modes are supported:

write:  write shadow information to a 3D texture file.  Recommended file format is .apm or .apc.

read:  read shadow information from a 3D texture file.  If the bake map does not contain relevant
shadow information for the current shading location, the light shader executes the normal shadow
evaluation code based on the shadowname setting.

append:  adds samples to an existing 3D texture file.  Useful for building a texture cache for an
animated sequence

readNDC:  read shadow values from a 2D texture map generated with a regular shadow pass.  The
texture map is indexed using Normalized Device Coordinates (NDC) which map the unit square to
the current rendered image.  The map is only used for primary (camera rays).  Secondary rays
generate shadows as usual.

readst:  read shadow values from a 2D texture map indexed using standard texture coordinates.
This mode is suitable for maps baked with BakeAIR.  This mode only works in AIR 8.16 or later
which allows lights access to the standard texture coordinates of an illuminated surface.

The bake map parameter can reference either a 2D or 3D texture file depending on the bake mode.
Per-object bake maps can also be specified by setting the bakemap value to the name of a user
attribute storing the map for each object.  E.g.,

LightSource "distantlight_baked" 1
  "string bakemode" "readst"
  "string bakemap" "user:bakedshadow1"
...
Attribute "user" "string bakedshadow1" "shadow1object1.tx"
Sphere 1 -1 1 360



Lighting 338

© 2001-2014 SiTex Graphics, Inc.

Per-object maps may be useful when using maps with baked shadows generated by BakeAIR.

Baked Shadows for Area Lights

The new arealight_baked and arealight2_baked shaders work similarly to the bake shaders mentioned
above with the following differences:

The arealight_baked shader cannot create a 3D texture file; bake modes write and append are not
supported.  The arealight_baked shader can read a 3D shadow file generated by the arealight2_baked
shader.

The arealight2_baked shader stores only shadow information in a 3D texture file.  It does not store the
virtual light location returned by the fast areashadow() function.  As a consequence rendering using a
3D texture file will look somewhat different than a normal render with the arealight2 shader.

Baked Indirect Illumination and Caustics

The new indirect_baked and caustic_baked shaders allow baking of indirect diffuse and caustics
respectively.  These shaders support the same modes described above for standard shaders, with the
natural difference that the light's emitted illumination is stored instead of a shadow value.

Note that for caustics rendering with AIR's builtin photon cache may be faster than using a baked 3D
point file.

To facilitate the use of the readNDC mode for these shaders, the AIR 9 distribution includes new
IndirectPass and CausticPass surface shaders for rendering an image with just the indirect diffuse or
caustic illumination values.

Using Baked Maps with Moving Objects

Some baking shaders provide additional parameters that allow baked maps to be used in scenes with
moving objects:

float[6] motionbound - 6 numbers defining a bounding box for moving objects in a scene as minx
maxx miny maxy minz maxz
string motionspace - the coordinate space for the motion bound

A shader with these parameters will not query a baked map on points inside the motion bound or (for
shadows) on points where a shadow ray might intersect the bound.  Normal shadow computations are
performed in those areas.

Food for Thought

It is perhaps worth mentioning that the 2D or 3D texture file used with one of the bake light shaders
need not have been generated with that light.  For example, it's possible to use an occlusion pass as
the bakemap (with bakemode=readNDC) for a spotlight, or say paint a 2D light map for use with the
indirect_baked shader.

14 Ray Tracing

Topics:

Importance-Based Rendering
Optimizing Memory for Ray Traced Objects



AIR User Manual339

© 2001-2014 SiTex Graphics, Inc.

14.1 Importance-Based Rendering

Air optimizes ray tracing calls based on how important they are to the overall shading result.  For
example, if a shader indicates that a reflection call will contribute only 1% to the final pixel color, Air can
use that information to produce a faster, lower-quality result than a reflection that contributes 50% to
the final pixel color.

The following options apply to importance-based rendering:

Option "trace" "float minweight" 0.01

gives a minimum weight below which ray tracing will stop.  AIR fades trace results near the threshold to
help avoid popping artifacts.  This optimization can be very effective in scenes with many levels of
interreflection.

Option "trace" "float reducesamples" 0.1

gives a weight threshold below which Air will begin reducing the quality of shadow and reflection
results.

Shader Writing and Importance

Specifying Importance

A shader is responsible for passing importance information to the renderer.  The importance or
"weight" of a ray is specified by providing a color "weight" parameter to a trace(),  environment(),
or shadow() function call.

In a surface shader that supports reflections, the weight of the trace() or environment() should
be the total multiplier applied to the traced results.  E.g., if the reflection component calculation were:

color Crefl = Kr * BaseColor * trace(P,R);

an updated version with a weight parameter might look like

color weight= Kr * BaseColor;
color Crefl = weight * trace(P, R, "weight", weight);

In a light shader with a shadow() call, the shadow weight should be the unshadowed output color
from the light.  E.g.,

Cl = intensity * lightcolor / (L.L);

color inshadow=0;
if (shadowname!="")
   inshadow = shadow(shadowname, Ps, "samples", shadowsamples,
                     "blur", shadowblur,
                     "bias", shadowbias,
                     "weight", Cl);

Querying Importance

The importance of the current shader evaluation can be queried with the rayinfo() function:

color weight=1;
rayinfo("weight", weight);



Ray Tracing 340

© 2001-2014 SiTex Graphics, Inc.

Importance information can be used to further optimize a shader for situations where lower quality
results are acceptable.  E.g., a shader that computes a detailed pattern might substitute a simpler
pattern that is less costly to compute when the importance drops below a certain threshold.

14.2 Optimizing Memory for Ray Traced Objects

Air 11 introduces a new option for optimizing the memory used when storing objects that are ray-
traced.  Enable memory optimization with:

Option "render" "optimizetracememory" [1]

The basic idea:  some objects need to be ray traced but do not need to be shaded when they are hit by
traced rays.  Once such objects have been processed by the main scanline renderer, we can saved
memory be freeing shading data such as surface normals and texture coordinates if that data is not
required for ray tracing queries.

Specifically, Air can free at least some shading-related primitive data for traced objects that are:

· Invisible to reflection rays
· Invisible to shadow rays or visible to shadow rays with transmission hit mode opaque or
primitive

· Invisible to indirect rays or visible to indirect rays with indirect shading mode constant or matte

For a typical Massive agent this optimization can reduce ray tracing memory by 1/3 to 1/2.

See Also

Lighting -> Indirect Lighting: Shading for Indirect Illumination
Lighting -> Shadows -> Ray Traced Shadows:  Ray Traced Shadow Attributes

15 Reflections

Topics:

Ray Traced Reflections
Reflections using Environment Maps
Anisotropic Reflections
BRDF Reflection Sampling

15.1 Ray Traced Reflections

AIR can simulate reflections using ray tracing or environment maps.  Both methods may be used in the
same scene, with some objects using environment maps and some using ray tracing.

Ray tracing reflections is accomplished with the aid of a suitable surface shader.  Many of the shaders
included with AIR support reflections, including the VMetal shader and the VPlastic shader.

Most shaders that support reflections offer the option of using either ray-traced reflections or some sort
of reflection map.

· To enable ray-traced reflections, set the envname or ReflectionName parameter of a surface
shader to the special name "raytrace".

· If the shader has a parameter such as ReflectionSpace or envspace for the coordinate space



AIR User Manual341

© 2001-2014 SiTex Graphics, Inc.

for the reflection vector, set that to "current".  (Most shaders included with AIR will automatically
detect the special raytrace keyword and use current space regardless.)

In addition to enabling ray tracing in a surface shader, objects that will appear in reflections must be
made visible to reflection or trace rays with the following attribute:

Attribute "visibility" "integer trace" [1]

The plugin for your modeling package should provide a control for this property or translate the
modeler's equivalent property.

Trace Bias

Occasionally you may observe spots or other artifacts in ray traced reflections due to incorrect self-
intersection of a reflected ray with the reflecting object. These artifacts can often be eliminated by
providing a small bias used to offset each traced ray from its original position:

Attribute "trace" "float bias" [0.01]

Note that the bias setting affects all ray tracing operations.

Blurry Reflections

Most shaders supporting reflections have a ReflectionBlur or envblur parameter for producing
blurry reflections. Larger values produce blurrier reflections.  To reduce the noise in blurry reflections,
increase the number of reflection samples using the ReflectionSamples or envsamples
parameter.

Maximum Ray Depth

The maximum depth to which AIR will recursively trace rays for reflection and refraction is set with

Option "trace" "integer maxdepth" [6]

Reflected Background

AIR provides options to specify a color or environment map used to color reflection rays that miss all
objects in a scene.  A background color can be given with

Option "reflection" "color background" [0 0 0]

A background environment map can be declared with

Option "reflection" "string envname" [""]
Option "reflection" "float envstrength" [1.0]
Option "reflection" "integer envsamples" [8]
Option "reflection" "float envblur" [0.0]
Option "reflection" "string envspace" ""

Motion Blur in Reflections

AIR will blur motion for reflected objects with the following attribute set

Attribute "trace" "integer motionblur" [1]



Reflections 342

© 2001-2014 SiTex Graphics, Inc.

Valid parameter values are 0 (disabled) and 1 (traced blur enabled).

For motion blur to appear in reflections, the reflecting surface shader must use more than 1 ray sample
or at least some reflection blur.

Traced motion blur will only display the first motion segment of multisegment motion blur.

#ReflectionGroups
Reflection Groups

AIR can optionally restrict objects appearing in reflections to members of specific groups.  AIR shaders
that allow reflection groups will have a ReflectionGroups parameter accepting a space or comma-
separated list of groups.  Only members of the specified list of groups will appear in ray-traced
reflections.

15.2 Reflections using Environment Maps

Environment mapping is a fast alternative to ray-traced reflections.  Environment maps store a view of
the environment surrounding an object.  Reflections are simulated by simply looking up a color in the
environment map, saving the time and memory used when reflections are ray-traced.

There are three main types of environment maps, distinguished by the method of projection:  mirror
reflection maps, spherical maps, and cube-faced maps.

Mirror Reflection Maps

Mirror or planar reflection maps are used to simulate reflections from flat surfaces, such as a tabletop,
floor, or wall mirror.  Reflection maps rely on the fact that the image seen in a planar mirror can be
generated by reflecting the camera about the mirror plane.  That relation implies that a mirror reflection
map is only valid for a given camera position.  A reflection map should have the same resolution and
aspect ratio as the final image.

Your plugin may provide a facility for automatically generating mirror reflection maps.

A mirror reflection map can be used with any shader that provides an environment map parameter and
means of setting the coordinate space used for indexing the environment map.  The coordinate space
should be set to "NDC" (Normalized Device Coordinates).

Sample shader declaration:

Surface "VMetal"
  "string ReflectionName" "floor.tx"
  "string ReflectionSpace" "NDC"

Spherical Environment Maps

Spherical or latitude-longitude environment maps store the surrounding environment using a spherical
projection.  Spherical maps are often generated by hand with a paint program.

A raw spherical texture map should be converted to a latitude-longitude environment map using the
mktexui or mktex conversion utilties.  Here's a sample command line for mktex:

mktex -envlatl mymap.tif mymap.tx

A spherical map can be used with any shader that supports environment maps.  The coordinate space



AIR User Manual343

© 2001-2014 SiTex Graphics, Inc.

for the environment lookup should normally be set to "world".

Sample shader declaration:

Surface "VMetal"
  "string ReflectionName" "blueskygreenground.tx"
  "string ReflectionSpace" "world"

Cube-faced Environment Maps

A cube-faced environment map is generated by rendering 6 orthogonal views of a scene from the point
of view of the reflective object.  The 6 maps are combined into a single reflection map using the mktex
facility:

mktex -envcube px nx py ny pz nz envfile.tx

A plugin may automatically generate cube-faced environment maps.

A cube-faced environment map can be used with any shader that supports environment maps.  The
coordinate space parameter (if present) should normally be set to "world".

Sample shader declaration:

Surface "VMetal"
  "string ReflectionName" "teapotrefl.tx"
  "string ReflectionSpace" "world"

15.3 Anisotropic Reflections

AIR ships with two shaders for simulating anisotropic reflections such as those seen on brushed metal
surfaces. The VBrushedMetal shader can be used for brushed metal surfaces, and the
VBrushedPlastic shader for plastic surfaces with fine grooves.

Most shaders that compute anisotropic reflections use a tangent vector on the surface to orient the
reflections.  Valid tangent vectors are always available on parametric surfaces such as NURBs or
bilinear or bicubic patches.  For other primitive types such as polygon meshes and subdivision
surfaces, AIR generates approximate tangent vectors based on the standard texture coordinates
defined for the mesh.

15.4 BRDF Reflection Sampling

Air 13 and later can sample the environment using reflection rays based on a particular BRDF
(bidirectional reflection distribution function).  This importance sampling method allows the behavior of
reflections and specular highlights to be controlled using the same parameters while producing
consistent results.  The new functionality enables a new set of shaders that implement physically
plausible shading models while reducing the number shader parameters and unifying the behavior of
specular highlights and reflections:

SimpleMetal
SimplePlastic
VPhysicalMetal
VPhysicalPlastic

For programmers, the documentation for the environment() function has a list of supported BRDFs



Reflections 344

© 2001-2014 SiTex Graphics, Inc.

and technical information on how to sample based on a BRDF.

16 Motion Blur, DOF, & LOD

Topics:

Motion blur
Depth of field
Level of detail

16.1 Motion Blur

AIR can blur the appearance of fast moving objects in an animated scene.  The shutter command
gives the open and close times for the camera shutter.  In a scene file this command appears as:

Shutter opentime closetime

There should be an equivalent setting in a user interface that supports animation.  An animation
program will set the appropriate shutter times for each frame automatically.

If opentime<closetime, AIR will blur the appearance of moving objects described using motion blocks.
To calculate the position of objects for motion blur, AIR records the position of objects at the open and
close times, and linearly interpolates between those positions for intermediate times.

The smoothness of motion blur depends directly on the number of pixel samples used.  AIR employs
brute force supersampling for motion blur.  The number of copies created of each object is currently
set by the total number of pixel samples.  The copies are scan-converted and averaged to produce a
motion-blurred image.  More samples produce smoother blur but also take longer to render.

The shutter for a typical motion picture camera is open about half the time between frames.  You may
wish to set the shutter times for animation to mimic that behavior.

Motion blur typically requires a large number of samples (8 x 8 or higher) to achieve good results.

Multi-segment Motion Blur

AIR supports multi-segment vertex and transformation motion blur with up to 32 time values.  AIR
ignores the time values, and uniformly interpolates among the supplied transformation or vertex
values.

Ray Tracing Motion Blur

Ray tracing results will include motion blur for primitives that have the following attribute set:

Attribute "trace" "integer motionblur" [1]

Motion blur is supported by caustics as well as the shading language functions environment(),
shadow(), and areashadow().  Motion blur will only appear when 2 or more samples or rays are
traced for query.  Use more samples with these functions to increase the quality of the blur.

Ray tracing with motion blur can be very time-consuming, and users are advised to selectively enable it
only where necessary.  For curved surfaces, use of the following motion factor optimization can
considerably improve performance in some cases.



AIR User Manual345

© 2001-2014 SiTex Graphics, Inc.

Motion Factor Optimization

AIR provides an attribute to automatically reduce the number of polygons used to represent a curved
primitive based on the how blurred the primitive appears.  This feature can be enabled on a per-
primitive basis with

GeometricApproximation "motionfactor" [1]

Motion factor is a scalar value:  large numbers will produce an even coarser tessellation; smaller
numbers produce a finer one.  A motion factor of 0 disables the optimization.

Time Shifting Motion Blocks in RIB Archives

The following attributes scale and offset the times passed in a motion block:

Attribute "render" "float shutterscale" [1]
Attribute "render" "float shutteroffset" [0]

Time shifting can be useful when re-using archives in an animation sequence.

Adaptive Motion Blur

AIR 6 introduces a new adaptive motion blur option.  To enable adaptive motion blur, set the maximum
number of motion samples with

Option "limits" "integer motionsamples" [n]

The minimum number of motion samples is taken from the pixel samples setting.  AIR selects the
number of motion samples for each object based on how far the object blurs on screen.  The number
of samples is calculated based on the maximum allowable distance between motion samples (in
pixels), which can be set with:

Option "render" "float motionthreshold" [0.5]

16.2 Depth of Field

AIR can simulate the limited focal range of a physical camera to produce depth-of-field effects.
Physical cameras have a limited range over which objects appear in focus; objects that are too close
or too far away appear blurred.  Depth of field is set by 3 parameters

DepthOfField f-stop focallength focaldistance

The parameters are taken from photography:

    f-stop:  the f-stop corresponding to the size of the aperture admitting light into the camera.  Smaller
numbers produce more blur.  Typical values for a 35mm camera range from 2.8 (very blurry) to 16
(focused).

    focallength:  focal length of the lens.  This should be in the same units as focaldistance

    focaldistance:  distance from the camera at which objects appear sharpest.

As with motion blur, the quality of an image rendered with depth of field depends directly on how many
pixel samples are used.  Blurrier images require more samples and take longer to render.



Motion Blur, DOF, & LOD 346

© 2001-2014 SiTex Graphics, Inc.

16.3 Level of Detail

AIR supports the RIB level of detail capability.  Unlike some other renderers, the quality of the blending
between levels of detail does not depend on the PixelSamples setting.

Alternate Detail Camera

AIR allows an alternate camera to be used for determining the level of detail in a scene.  The following
option

Option "render" "integer detailcamera" [1]

marks the current camera definition (Projection, ScreenWindow, Format, and world-to-current
transformation) as the camera to use to calculate level of detail.  This option is followed by the normal
camera definition for the scene.  An alternate camera is useful for rendering a shadow map that uses
the same detail models as the beauty pass.

Limitations

Blending between levels is not supported in the ray tracer; only the representation with the greatest
blend weight is retained for ray tracing.  Similarly, the shadow hider only tests the model with the
largest blend weight in a transition region.

Automatic Level of Detail

AIR can automatically reduce the density of polygon meshes using an automatic LOD capability
described here.

17 Outlines for Toon Rendering and Illustration

AIR can automatically draw outlines for cartoon rendering and illustration.  Outline generation takes
place at the sub-pixel level, producing smooth lines without the need to render large intermediate
images or post-process the rendered image.

Outlining is enabled with the following option:

Option "toon" "float maxinkwidth" [n]

where n gives the maximum line width in pixels.  AIR uses this option to expand the internal storage for
each bucket to prevent lines from being clipped at bucket boundaries.

The smoothness of the outlines depends on the number of pixel samples used.  Increase the number
of pixel samples for smoother lines.

AIR provides several methods of generating outlines, which can be divided into two broad categories -
image-based methods and object-based methods.

Image-based Outlines

Region Boundaries

Edge lines are drawn between different regions of an image.  By default each primitive is assigned a
distinct region id.  A region id can be explicitly assigned to a primitive with:

Attribute "toon" "integer id" [n]



AIR User Manual347

© 2001-2014 SiTex Graphics, Inc.

The image background is assigned a region id of 0.

The special region id of -2 causes every polygon to receive a distinct id, which can be used to outline
a rendering mesh for illustration purposes.

The region id may also be generated in a surface shader by setting a __toonid output variable of
type float.  This capability allows shader-generated patterns to be outlined.

Depth Differences

Another method of identifying different regions or objects is to use depth-based detection, which can
be enabled with:

Attribute "toon" "float zthreshold" [depth]

Where depth gives the minimum depth between distinct surfaces.  The depth threshold can be set
by a surface shader with a __toonzthreshold output variable of type float.

Silhouette Edges

AIR provides two methods of detecting silhouette edges.  By default AIR detects silhouettes using an
image-based technique that looks for differences in the surface normal.  The threshold for image-
based silhouette detection can be tuned with the following attribute:

Attribute "toon" "float silhouette" [0.5]

The valid range is 0 to 1.  To disable this method of silhouette detection set the silhouette threshold
to 0 or 1.  The silhouette threshold may be set by a surface shader with a __toonsilhouette
output variable of type float.

Object-based Outlines

Silhouette Edges

AIR provides a second object-based method of silhouette detection that looks for boundaries
between front- and back-facing polygons in the rendering mesh.  This method  (disabled by default)
can be enabled with:

Attribute "toon" "integer frontback" [1]

If you use the front-back method of silhouette detection, you may wish to disable to the image-based
method.

Note that this method may not work well with the automatic meshing method for NURBs; using
explicit meshing may help.

Face Border Edges

Edges that are shared by only one face can be included in vector-based outlines by enabling the
following attribute:

Attribute "toon" "integer nakededges" [1]

Angle-based Edges

AIR can detect edges based on the angle between adjacent faces.  The minimum angle in degrees



Outlines for Toon Rendering and Illustration 348

© 2001-2014 SiTex Graphics, Inc.

for edge-detection is set with

Attribute "toon" "integer faceangle" [angle]

When angle is 0, angle-based edge detection is disabled.

Edge Tagging

Air 14 and later allow individual edges of a polygon mesh to be explicitly included in vector-based
outlines by providing a facevarying "toonedge" prim var of type float in the mesh definition.  Each
entry is either 1 (edge is visible) or 0 (edge is hidden).

Edge Merging

Air 14 and later allow duplicate object-based edges to be merged and treated as a single edge.
Merging edges can help avoid redundant drawing when using a stroke shader.  Enable edge
merging with:

Attribute "toon" "boolean mergeedges" [1]

Edges are considered to be the same if their end points are within a given tolerance:

Option "toon" "mergetolerance" [0.01]

Edge Length

Air 14 introduces a new option to limit the length (measured in pixels) of any one edge:

Option "toon" "float maxedgelength" [0]

When this option is set to a positive value, any edges longer than the specified limit are progressively
split until the limit is satisfied.  This option can be useful when rendering with stroke shaders.

Line Color

Line color can be set on a per-primitive basis with

Attribute "toon" "color ink" [0 0 0]

Ink color can also be set by a surface shader with a __ink output variable of type color.

Line Width

Line width is set with

Attribute "toon" "float inkwidth" [1]

which gives a distance in pixels.  Line width can be set in a surface shader by exporting a
__inkwidth output variable of type float.

The following option can be used to globally scale the width of all outlines:

Option "toon" "float inkwidthmultiplier" [1]

Line width can be automatically reduced with distance from the camera by setting a distance at which
to begin fading with



AIR User Manual349

© 2001-2014 SiTex Graphics, Inc.

Option "toon" "float fadethreshold" [n]

Set the fade threshold to 0 to disable line width attenuation with distance.  When the fade-with-distance
option is enabled, a minimum ink width can be set with

Option "toon" "float mininkwidth" [0.0]

to prevent outlines from completely disappearing at large distances.

Saving Outlines

The outline information may be saved to an image file by using the special __toonline output
variable in a Display call.  The __toonline output variable has a single value representing the
fraction of each pixel that is covered by a line.

Exporting Outlines as Vectors

AIR 10 introduces the ability to export outlines as vectors.  Specify the exported file name with:

Option "toon" "string vectorexportfile" "filename.svg"

Only outlines detected using one the vector-based methods described above will be included.  The
following file formats are currently supported:  SVG, DXF, AI.

See Also

VToon surface shader

17.1 Illustration Shaders and Examples

Constant Shading

For simple illustration, you may wish to use the constant shader in conjunction with outlining.

Cartoon Shading

For cartoon rendering, try the VToon shader included with AIR.  Because toon-style shading often has
sharpen transitions between dark and light regions, you may need to user a lower shading rate to
produce smooth shading results.



Outlines for Toon Rendering and Illustration 350

© 2001-2014 SiTex Graphics, Inc.

Ambient Occlusion and Outlines for Illustration

For a softer look, try a matte surface shader with ambient occlusion and outlines:

More examples of toon rendering and illustration can be found in

$AIRHOME/examples/toon

18 Volume Rendering

AIR 4 introduces a new volume primitive type for efficient rendering of volumetric effects.  Although
AIR can still produce volumetric effects by ray marching in a volume shader, volume primitives are
typically much more efficient.

Defining Volume Primitives

A volume primitive defines a volume as a basic shape within a bounding box.  The shape can be a box,
ellipsoid, cylinder, or cone.

Volume primitives can have arbitrary user data applied, either as a 3D grid of data values or as a point
set with associated per-point data values.

Your RIB export plugin may automatically export fluid simulation or particle simulation data as a
volume primitive.  Users interested in creating their own volume primitives should see the section on
the RIB Volume statement.

Shading Volume Primitives

Like other primitive types. the color and opacity for a volume primitive is computed by a surface shader
- not a volume shader.  The surface shader need only compute the shading and lighting at the current
shading location, P.  AIR takes care of storing and using the results of individual surface evaluations to
compute the visibility and color for individual ray queries for a given volume.  The following AIR



AIR User Manual351

© 2001-2014 SiTex Graphics, Inc.

shaders are designed to shade volume primitives:

particle
VCumulusCloud
VSmokeSurface

Shading Rate and Volume Quality

To accelerate rendering of volumetric effects, volume primitives use a dynamically created 3D shading
cache, which decouples shader evaluation from visibility determination.  The resolution of the shading
cache, and hence the quality of the volume approximation - is based on the shading rate attribute.  A
larger shading rate will produce a faster, coarser image and consume less memory.  Some common
volume patterns do not require fine resolution to produce acceptable results.  Many of the sample
volume scenes included with AIR use a shading rate of 4, and that is recommended as a starting point
for volume rendering.

Volume Visibility and Shadows

Volume primitives respect the normal attributes for visiblity to camera, reflection, and shadow rays.
Volume primitives are not currently visible to indirect rays.

Volume primitives with complex transparency should have the shadow ray transmission type set to
"shader":

Attribute "visibility" "string transmission" ["shader"]

By default all volume primitives will cast shadows upon themselves.  Simple primitives that do not
require self-shadowing can be accelerated by disabling self-shadowing with:

Attribute "visibility" "integer selfshadow" [0]

Volume primitives do not cast colored shadows by default.  To enable colored shadows, set

Attribute "volume" "integer coloredopacity" [1]

Rendering with colored shadows is slower, but it does not use more memory that rendering with grey-
scale shadows.

The look of volumetric primitives can often be improved by using separate opacity values for shadow
rays and camera rays.  AIR provides separate attributes to tint the opacity computed by the surface
shader differently for shadow rays and camera rays:

Attribute "volume" "color shadowdensity" [1 1 1]
Attribute "volume" "color viewdensity" [1 1 1]

Motion Blur

Volume primitives support internal motion blur if additional motion data is provided in the primitive
definition.

Transformation motion blur is currently applied to volume primitives as internal motion blur.  Volume
primitives boundaries will not blur.

Regular motion-blurred primitives may appear within and pass through volume primitives.

Tips

· The time required to render a volume primitive and the memory consumed is heavily influenced by



Volume Rendering 352

© 2001-2014 SiTex Graphics, Inc.

the shading rate and the relative size of the primitive.  For fast render times, use as high a shading
rate as possible for the required image quality.

· When a volume primitive with a high shading rate is viewed face-on, - that is, from a direction that is
nearly perpendicular to one of the faces of the bounding box - artifacts of the 3D shading cache may
become visible.  Such artifacts can be reduced by changing the point-of-view to a more oblique
angle, lowering the shading rate, reducing the contrast of the shading results, or eliminating small
pattern details.

18.1 Writing Shaders for Volume Primitives

Shading for a volume primitive is performed by its assigned surface shader.  The surface shader need
only calculate the color and opacity at P.  AIR takes care of integrating shading information along query
rays through the primitive.  Surface shader variables are initialized so that sqrt(area(P)) gives a
good filter width estimate for anti-aliasing procedural patterns.

When applying the shader results to a ray through the volume medium, AIR treats the opacity result as
the optical thickness of the material over the unit interval in object space.  The actual attenuation
applied for a distance D is

1-exp(-Oi*D)

Output opacity values greater than 1 are permitted.  A shader for a volume primitive should normally
provide a parameter for scaling the output opacity as the proper value is dependent on the scale of the
object.  E.g., a sphere with radius 100 would need an opacity value .01 times smaller to match the
appearance of a sphere of radius 1.

Unlike shader results for surface primitives, there is no general expectation that the output color will be
proportional to the output opacity - with one exception:  if the output opacity is 0 (the volume is
transparent at this location), the output color should be set to 0.

Opacity Modulation for Different Ray Types

To accelerate rendering AIR stores surface shader results in a 3D cache, and only one set of values is
stored at each shading location for all ray types.  AIR provides two custom attributes for modifying the
base opacity stored in the shading cache independently for shadow rays and camera (or reflection)
rays:

Attribute "volume" "color shadowdensity" [1 1 1]
Attribute "volume" "color viewdensity" [1 1 1]

Shader Optimization

For volume primitives with complex opacity and self-shadowing, AIR often evaluates the surface
shader twice at each shading location:  once for a shadow ray, then a second time for a camera or
reflection ray.  AIR provides a method of optimizing the second evaluation by supplying the opacity
result from the first evaluation in the Oi global opacity variable.  If the shader is being executed for the
first time at this location, Oi is set to -1.  A surface shader can test Oi and avoid recomputing an
expensive opacity function if it has already been evaluated:

 if (comp(Oi,0)<0) {
   /* compute expensive opacity function */
 }

Sample Shaders



AIR User Manual353

© 2001-2014 SiTex Graphics, Inc.

The particle, VCumulusCloud, and VSmokeSurface shaders included with AIR are designed to shade
volume primitives.

18.2 RIB Volume Primitive

Volume "shape" [xmin xmax ymin ymax zmin zmax]
Volume "shape" [xmin xmax ymin ymax zmin zmax]
  [nx ny nz] parameter list
Volume "shape" [xmin xmax ymin ymax zmin zmax]
  [0 0 0] "P" [...] parameter list

A Volume primitive describes a region of space to be shaded as a 3D volume based on the assigned
surface shader.  The volumetric region is defined as a bounding box with one of the following shapes:

box ellipsoid cone cylinder

Cone and cylinder shapes are oriented around the z-axis in object space.  The cone tip is at zmin.

Grid-based User Data

Volume primitives provide two ways of assigning varying user data:  grid-based and particle-based.
The first method is useful for rendering the results of voxel-based fluid simulations.  Grid-based user
data is assigned by defining a nx x ny x nz 3D grid.  Each varying variable should have nx*ny*nz
values.  Typically one will want to assign varying opacity values. AIR provides an efficient way to
specify a single channel opacity instead of the usual 3-channel color Os in the form of a "varying
float floatOs" parameter.

Volume "box" [-2 2 -2 2 -2 2]
  [2 2 2] "varying float floatOs" [1 1 0 0  .5 .5  0 0]

Varying data is interpolated and supplied to the surface shader at each shading location.  This allows a
surface shader to modify the base output from a fluild simulation, for example, to add additional fine
detail.

Particle-based User Data

Particle data can be rendered as a volume primitive by defining a null grid ([0 0 0]) and providing P
position data with varying data associated with each point.  The size of each particle can be set with a
single constantwidth parameter or a varying width parameter.  The particles are blended together
like blobby primitives to obtain the base opacity value for each shading location, accounting for any
varying Os or floatOs data supplied.  Other user data is blended in the normal way.

Particle-based data is evaluated using a fast space-subdivision structure which makes it feasible to
render large numbers of particles.

Motion Blur

Intravolume motion blur is support for grid-based user data by providing varying vector dPdtime data.
A constant __motionoffset variable can be used to shift the motion vector relative to a given point.



Volume Rendering 354

© 2001-2014 SiTex Graphics, Inc.

The actual motion vector at point P extends from P-motionoffset*dPdtime to P+(1-
motionoffset)*dPdtime.  The default motion offset is 0.

Transformation motion blur is currently applied as intravolume blur.  Boundaries of a volume primitive
will not blur.

Procedural Primitives

Procedural primitives that generate volume primitives should be tagged with the following attribute:

Attribute "visibility" "integer volume" [1]

19 Pipeline, Workflow, and Optimization



AIR User Manual355

© 2001-2014 SiTex Graphics, Inc.

19.1 Conditional RIB

Syntax:

IfBegin "condition"
ElseIf "condition"
Else
IfEnd

Conditional RIB statements allow sections of RIB to be enabled or disabled based on an expression.
The expression may including tests on user-defined options and attributes.  For example:

Attribute "user" "string pass" "beauty"

IfBegin "$user:pass=='shadow'"
   Surface "constant"
ElseIf "$user:pass == 'beauty'"
   Surface "vmarble"
Else
   Surface "matte"
IfEnd

19.2 RIB Filters

AIR 6 and later provide a filter plugin capability for modifying the stream of RIB commands before they
are processed by the renderer.

The current filter is defined using the following attribute:

Attribute "render" "string rifilter" "filtername arg1 arg2"

AIR will search the procedural search path for the filter program. Because the current filter is an
attribute, a filter can easily be applied to only a subsection of a scene, say just the Massive agents. For
example, to replace the surface shader assigned to a group of objects, one might use the following RIB
snippit:

AttributeBegin
  Surface "occlusionpass"
  Attribute "render" "string rifilter" "cullrib Surface"
  ReadArchive "agents.rib"
AttributeEnd

No other scene elements will be affected by the filter.

To help with debugging filter plugins, AIR 8 includes a new -echorif command line option that
echoes the output from a RIB filter to the standard output stream.

Sample Filters

The AIR distribution includes several sample filters along with their source code in
$AIRHOME/procedurals.

echorib list of RIB commands

The echorib filter accepts a one or more RIB commands as arguments. Any matching commands
found in the RIB stream are printed to the terminal on stderr and passed back to the renderer for
normal processing.



Pipeline, Workflow, and Optimization 356

© 2001-2014 SiTex Graphics, Inc.

Echorib is useful for seeing exactly what commands are included in a scene. AIR has a -rif command
line switch for applying a filter to the whole rib stream. E.g., to see all attributes in a scene use:

air -rif "echorib Attribute" myscene.rib

cullrib list of RIB commands

The cullrib filter removes the specifed commands from the command stream before they are
processed. For example, to disable all displacements in a scene:

air -rif "cullrib Displacement" myscene.rib

surftoprim list of parameters

The surftoprim filter takes one or more surface shader parameters as arguments. When the filter
encounters a Surface call, it stores any parameters that match the argument list and adds those
parameters and values to subsequent primitives as primitive variable data. The Surface call is removed
from the RIB stream.

Sample Usage for Massive scenes:

The surftoprim filter allows the agent surface shader to be changed in another program such as Maya
or Houdini while retaining the per-agent parameter values generated by Massive. For example, say
agents have the VPlastic surface shader assigned in Massive and with a different color map for each
agent. The RIB stream produced by the Massive procedural might look something like:

Surface "VPlastic" "string ColorMapName" "shirt1.tif"
PointsPolygons ....
Surface "VPlastic" "string ColorMapName" "shirt2.tif"
PointsPolygons ....

Applying the following filter:

Attribute "render" "rifilter" "surftoprim ColorMapName"

produces:

PointsPolygons .... "constant string ColorMapName" "shirt1.tif"
PointsPolygons .... "constant string ColorMapName" "shirt2.tif"

One can then assign the VPlastic shader to a RIB box referencing the filtered agents and manipulate
other shader parameters while retaining the color map values generated by Massive. Naturally one can
use a different surface shader as well, and any matching primitive variable data will be used. E.g.,

AttributeBegin
  Surface "VClay"
  Attribute "render" "rifilter" "surftoprim ColorMapName"
  ReadArchive "agents.rib"
AttributeEnd

Writing RI Filters

An RI filter is structured similarly to a procedural runprogram. The sample filters are written in C, but
any programming language may be used.



AIR User Manual357

© 2001-2014 SiTex Graphics, Inc.

When first invoked, the filter should emit a single line containing a list of RIB commands that the filter
will process. Then the filter should enter a loop that waits on stdin. Each RIB command will be sent as
a single line of potentially very long ASCII RIB. To pass RIB commands back to the renderer, send
them to stdout. When the filter is done processing the current command, it should emit a byte value
255. The filter may also need to flush the stdout stream to force all data down the pipe to the renderer.

Source code for the sample filters included with AIR can be found in $AIRHOME/procedurals.

19.3 Geometry Export

Beginning with release 3.0 AIR allows the polygonal meshes used for rendering to be exported to a file,
allowing the displaced geometry and other complex shapes such as a blobby system to be saved for
re-use with AIR or for import into a modeling package.  AIR can typically re-render a baked
displacement mesh many times faster than the original object with true displacement.

To export the rendering mesh for an object, provide a filename with the following attribute:

Attribute "render" "string meshfile" filename

The file format is determined by the file name extension:

Extension Format
.rib RenderMan RIB
.dra RIB using DelayedReadArchive
.obj Wavefront OBJ
.ply PLY polygon format
.stl STL format

RIB export normally uses the binary RIB format.  If the mesh file name contains the string ascii, the
RIB file will be in ASCII format instead of binary.

Additional Attributes for Geometry Export

Attribute "render" "integer makePref" [0]

Set this attribute to 1 to generate __Pref point data for the exported mesh containing the undisplaced
vertex positions.

Attribute "render" "integer makeNref" [0]

Set this attribute to 1 to generate __Nref normal data for the exported mesh containing the vertex
normals prior to displacement.

Attribute "render" "string meshspace" ["world"]

Specifes the coordinate space for exported point and normal data.  The only support spaces are
"world" and "object".

19.4 General Optimization Tips

Tips on optimizing rendering to reduce speed and/or memory used:

· Ray trace only when necessary to save time and memory.



Pipeline, Workflow, and Optimization 358

© 2001-2014 SiTex Graphics, Inc.

Objects that do not need to be ray traced should be made invisible to all ray types - shadow rays,
reflection rays, and indirect rays.  AIR can discard such objects as soon as they have been rendered.

The AIR Show framebuffer can be used to see if any objects are retained for ray tracing in a scene.
The second box from the right in the status bar displays one or more letters if any objects are visible
to shadow rays (S), reflection rays (R), or indirect rays (I).  If you are not using ray tracing in a scene,
make sure that box is empty.

· For motion-blurred curved or displaced primitives enable the motion factor optimization.

· For complex scenes, using Procedural primitives to generate or load primitives on-demand can
dramatically reduce peak memory use.

· In some cases of extreme motion blur the memory used by the shading cache can become
significant.  You can lower the cache size using an option.

· For scenes with many large shadow maps you may need to increase the texture cache size to avoid
thrashing.

· Blobbies:
· Using a higher tessellation factor can significantly reduce peak memory and render time
· For true displacement enable the meshdisplacement (Attribute "render"
"meshdisplacement" [1])

20 TweakAir for Interactive Rendering

TweakAIR is an interactive rendering tool based on the AIR renderer. TweakAIR is designed to allow
interactive tweaking of high-quality images with the full range of advanced rendering effects supported
by AIR.

TweakAIR accepts regular RIB files as input. At the beginning of an interactive rendering session
TweakAIR creates a "deep" framebuffer for the current view that stores information about the visible
surfaces at each pixel. Once the deep framebuffer has been generated, shading and lighting settings
for the scene can be changed interactively, and the rendered image will automatically update to reflect
the changes.

TweakAIR employs various caching mechanisms and re-evaluation heuristics to accelerate the re-
rendering of scene elements.

Users will typically interact with TweakAIR via their plugin or modeling software.  TweakAIR is currently
supported by AIR Space, the RhinoAIR plugin for Rhino, and the MayaMan plugin for Maya.

Features

TweakAIR provides the following capabilities:

· Select primitives by name or shading group
· Change any parameter for any assigned surface, displacement, or light shader
· Move lights
· Add new lights
· Assign new surface and displacement shaders

Limitiations

The following features are not supported by TweakAIR:



AIR User Manual359

© 2001-2014 SiTex Graphics, Inc.

· Motion blur
· Depth of field
· Level of detail
· PixelFilter
· PixelSamples (use the corresponding ipr option instead)
· Shading rate

Developer's Kit

Documentation for the TweakAIR API can be found in this section of this user manual.

20.1 TweakAIR Options

The following options can be used to tune the performance of TweakAIR:

Deep Framebuffer Depth

Option "ipr" "integer mindepth" [1]
Option "ipr" "integer maxdepth" [4]

These options set bounds on the number of surface layers TweakAIR stores at each pixel.

Ray Trace Sampling

Option "trace" "integer maxshadowsamples" [4]
Option "trace" "integer maxtracesamples" [4]

These options set the maximum number of shadow and reflection rays to trace on any given ray
tracing call. Use these options to optimize interactive rendering while allowing higher samples for final
rendering with AIR.

Reflection Updating

Option "ipr" "integer retrace" [1]

When this option is enabled, TweakAIR will reshade an object whenever a reflected object's shading
changes.  Automatic reflection updates will adversely affect the overall IPR refresh rate.

Geometric Anti-aliasing

Option "ipr" "integer[2] pixelsamples" [1 1]

This option sets the number of pixel samples to use during IPR rendering.  Currently the only
supported values are 1 1 and 4 4.  Using more pixel samples can have a significant impact on re-
rendering time to the additional shading samples that are usually required.

20.2 TweakAIR Attributes

Use the following attributes to tune the performance of TweakAIR:

Shading

Attribute "ipr" "string shading" "shade"

This attribute allows shading to optimized during an IPR session without affecting shading during a final
render. Supported types are



TweakAir for Interactive Rendering 360

© 2001-2014 SiTex Graphics, Inc.

matte shade object using a simple, fast matte shader
relight optimize shading for re-lighting
shade shade object using its assigned surface shader

The relight mode provides fast re-rendering for even complex surface shaders with the following
properties:

The surface shader must use only builtin illumination statements:  diffuse(), specular(), phong(), or
blinn().  I.e., no custom illuminance loops.

The surface shader must provide __diffuse and __specular output variables.

TweakAIR is able to decouple lighting computations from surface shader evaluation for surface
shaders that meet the above two conditions.  After the inital surface evaluation. AIR can compute the
effects of lighting changes on an object without having to re-execute the surface shader, which means
that the refresh rate for relighting is independent of the complexity of the surface shader.

Although this mode is called "relight", it is still possible to tweak surface shader parameters - though
modifying a parameter of the surface shader will require re-executing the shader.

Displacement

Attribute "ipr" "integer displacement" [1]

When set to 0 this attribute blocks execution of an object's displacement shader during an IPR session
without affecting displacement during a final rendering.

Global Variable Storage

Attribute "ipr" "string globals" [""]

This attribute defines a list of global variables to store at a surface in addition to the position, normal,
and texture coordinate variables that are always stored. Possible items: dPdu, dPdv.

20.3 TweakAIR API

Integration

Adding support for TweakAIR to an application that already supports AIR is straightforward.  TweakAIR
provides two mechanisms for managing an interactive session:

1.  A C-based API for launching TweakAIR as an external process and sending update commands
via a TCP/IP socket connection.
2.  Simple text commands that can be sent to TweakAIR via the standard input stream - either from
a command shell or via a connecting pipe.

TweakAIR C API

The C-based API header and source are included in the AIR distribution in
$AIRHOME/examples/tweakair.

To begin an interactive rendering session, create a RIB file as usual and start a tweakair session with
the IrBegin call. Then call the appopriate interface routine to update the rendering as the user
changes the shading and lighting for the scene. The following interactive functionality is provided:



AIR User Manual361

© 2001-2014 SiTex Graphics, Inc.

Primitive selection: Use IrSelect call to select one or more primitives to modify.

Shader parameter tweaking: Use IrTweakSurface, IrTweakDisplacement, and IrTweakLight
to modify shader parameters for the selected primitives or light.

New shader assignment: Use IrNewSurface and IrNewDisplacement to assign new shaders to
selected primitives.

New lights: Use IrNewLight to add new lights to the scene.

Moving a light:  Use IrLightTransform to update the transformation applied to a light source.

Moving the camera:  Use IrTweakCamera to change camera position or field of view.

Attribute tweaking: Use IrColor and IrOpacity to change the corresponding color and opacity
attributes. Use IrTweakAttribute to change general attributes (be sure to consult the list of
tweakable attributes).

The C API uses a TCP/IP socket connection to communicate with the TweakAIR process.

TweakAIR Text API

TweakAIR also accepts update commands from a command line or piped input stream.

For simple changes, you can start TweakAIR from a command shell, and then type update commands.
E.g.,

tweakair myscene.rib
IrColor 1 1 0  # change all objects to yellow
IrNewSurface "VMetal" # change all surface shaders to metal
IrWriteImage "gold.tif"
IrEnd

You may need to press the Enter key twice after each command to send it to the rendering process.

A more flexible means of sending updates is to pipe a text file with commands to the standard input
stream:

tweakair myscene.rib <myupdates.txt

An example of this method can be found in $AIRHOME/examples/tweakair.

Error Handling

Most calls return a non-zero error code if the call fails. Pretty much the only reason for failure is that the
communication link with TweakAIR has been broken - in most cases because the TweakAIR instance
has been shutdown by the user. In the event of an error, an application should call IrEnd to free the
IPR structure and terminate the current IPR session.

20.3.1 IrBegin

IPR *IrBegin(char *cmdline);

This call starts an interactive rendering session. TweakAIR is started with the provided scene file. The



TweakAir for Interactive Rendering 362

© 2001-2014 SiTex Graphics, Inc.

call returns a pointer to an IR session that should be used as the first parameter for all IR functions.
The IR library supports multiple simultaneous interactive sessions.

20.3.2 IrColor

C:  int IrColor(IPR *ipr, float r, float g, float b);

Text:  IrColor r g b

The IrColor command changes the color attribute of the selected primitives.

20.3.3 IrDeleteLight

C: int IrDeleteLight(IPR *ipr, char *handle);

Text:  IrDelete handle

The IrDeleteLight command deletes the light corresponding to the specified handle.

20.3.4 IrEnd

C: void IrEnd(IPR *ipr);

Text:  IrEnd

This call terminates the interactive rendering session.

20.3.5 IrIlluminate

C: int IrIlluminate(IPR *ipr, char *handle, int on);

Text: IrIlluminate handle 0|1

Use this command to turn the specified light on (1) or off (0) for selected objects.

20.3.6 IrLightTransform

C: int IrLightTransform(IPR *ipr, char *handle, float *transform);

Text:  IrLightTransform handle [matrix]

This function sets the shader-to-world transformation matrix for the indicated light.

In the C call the transform parameter should point to an array of 16 floats.

20.3.7 IrNewDisplacement

C: int IrNewDisplacementV(IPR *ipr, char *shadername, int ntk, char **tk,
void **v);

Text:  IrNewDisplacement shadername parameter list

This function assigns a new displacement shader to the selected primitives. Tokens in the parameter



AIR User Manual363

© 2001-2014 SiTex Graphics, Inc.

list must have full inline type definitions.

20.3.8 IrNewEnvironment

C: int IrNewEnvironmentV(IPR *ipr, char *shadername, int ntk, char **tk,
void **v);

Text:  IrNewEnvironment shadername parameter list

This function assigns a new environment shader to the scene. Tokens in the parameter list must have
full inline type definitions.

20.3.9 IrNewImager

C: int IrNewImagerV(IPR *ipr, char *shadername, int ntk, char **tk, void
**v);

Text: IrNewImager shadername parameter list

This function replaces the current imager shader with a new one. Tokens in the parameter list must
have full inline type definitions.

20.3.10 IrNewLight

C: int IrNewLightV(IPR *ipr, char *shadername, char *handle, float
*transform, int ntk, char **tk, void **v);

Text: IrNewLight shadername handle [matrix] parameter list

This call adds a new light to the scene. Tokens in the parameter list must have full inline type
definitions. The transform parameter is a pointer to a matrix with the shader-to-world transformation.

Special Parameters:

"float locallight" [1]

By default a new light illuminates all primitives in the scene. If this parameter is present, the new light
illuminates only the currently selected primitives.

20.3.11 IrNewSurface

C: int IrNewSurfaceV(IPR *ipr, char *shadername, int ntk, char **tk, void
**v);

Text: IrNewSurface shadername parameter list

This function assigns a new surface shader to the selected primitives. Tokens in the parameter list
must have full inline type definitions.

20.3.12 IrOpacity

C: int IrOpacity(IPR *ipr, float r, float g, float b);



TweakAir for Interactive Rendering 364

© 2001-2014 SiTex Graphics, Inc.

Text: IrOpacity r g b

This command changes the opacity attribute of the selected primitives.

20.3.13 IrRefreshWindow

C: int IrRefreshWindow(IPR *ipr, float left, float right, float top, float
bottom);

Text: IrRefreshWindow left right top bottom

Use this command to restrict refreshing of the IPR window to a subrectangle. The parameters have the
same interpretation as the RI CropWindow call.

Examples:

Restricting refresh to the upper, right-hand quarter of the image:

IrRefreshWindow(0.5, 1.0, 0.0, 0.5);

Restoring refresh for the entire image:

IrRefreshWindow(0.0, 1.0, 0.0, 1.0);

20.3.14 IrSelect

C: int IrSelect(IPR *ipr, char *type, char *handle);

Text: IrSelect type handle

Use this call to select primitives for tweaking. Primitives can be selected by name or by shading group.
A primitive's name should be set in the scene file with:

Attribute "identifier" "string name" ["teapot"]

This object could be selected with:

IrSelect(ipr,"name","teapot");

A shading group is meant to correspond to the concept of a material in a modeling program. The
shading group for a primitive is set with:

Attribute "identifier" "string shadinggroup" ["redbrick"]

All primitives in a given shading group can be selected with:

IrSelect(ipr, "shadinggroup", "redbrick");

By default the new selection set replaces the old list of selected primitives. If the handle is preceded by
a "+", new primitives will instead be added to the selection set. If the handle is preceded by a "-",
matching primitives are removed from the selection set.

The special handle "*" can be used to select all primitives:

IrSelect(ipr, "name", "*");



AIR User Manual365

© 2001-2014 SiTex Graphics, Inc.

20.3.15 IrTweakAttribute

C: int IrTweakAttributeV(IPR *ipr, char *name, int ntk, char **tk, void
**v);

Text:  IrTweakAttribute name parameter list

Use this function to modify attributes for the selected primitives. Tokens in the parameter list must
have full inline type definitions.

The following attributes are tweakable:

Attribute "ipr" "string shading" type
Attribute "ipr" "integer displacement" [n]
Attribute "identifier" "string shadinggroup" name

20.3.16 IrTweakCamera

C: int IrTweakCamera(IPR *ipr, char *name, float *transform, float fov);

Text: IrTweakCamera name [matrix] fov

Use this command to update the camera position used for the interactive viewport.  The transform
parameter is a matrix giving the new world-to-camera space transform.  For perspective views the fov
parameter gives the new field of view in degrees.

The name parameter is currently ignored.

TweakAIR traces reflection rays to update the deep framebuffer when the camera changes.  Objects
must be visible to reflection rays in order to appear in the viewport after a camera move.

20.3.17 IrTweakCoordinateSystem

C: int IrTweakCoordinateSystem(IPR *ipr, char *name, float *transform);

Text: IrTweakCoordinateSystem name [matrix]

This function sets the space-to-world transformation matrix for the named coordinate system.

The transform parameter should point to an array of 16 floats.

20.3.18 IrTweakDisplacement

C: int IrTweakDisplacementV(IPR *ipr, int ntk, char **tk, void **v);

Text: IrTweakDisplacement parameter list

Use this function to modify displacement shader parameters for the selected primitives. Tokens in the
parameter list must have full inline type definitions. The selected primitives need not have the same
displacement shader assigned. This function simply looks for matching parameters in whatever
displacement shader (if any) is currently assigned to a primitive.



TweakAir for Interactive Rendering 366

© 2001-2014 SiTex Graphics, Inc.

20.3.19 IrTweakEnvironment

C: int IrTweakEnvironmentV(IPR *ipr, int ntk, char **tk, void **v);

Text: IrTweakEnvironment parameter list

Use this function to modify environment shader parameters. Tokens in the parameter list must have
full inline type definitions.

20.3.20 IrTweakImager

C: int IrTweakImagerV(IPR *ipr, int ntk, char **tk, void **v);

Text: IrTweakImager parameter list

Use this function to modify parameters for the current imager shader. Tokens in the parameter list
must have full inline type definitions.

20.3.21 IrTweakLight

C: int IrTweakLightV(IPR *ipr, char *handle, int ntk, char **tk, void **v);

Text: IrTweakLight handle parameter list

Use this function to modify the parameters of the light shader attached to a light. Tokens in the
parameter list must have full inline type definitions.

Special Parameters:

"float refreshshadows" [1]

Including this parameter flushes the shadow cache and forces the light to be re-evaluated at all
surfaces illuminated by the light.

20.3.22 IrTweakOption

C: int IrTweakOptionV(IPR *ipr, char *name, int ntk, char **tk, void **v);

Text: IrTweakOption name parameter list

Use this function to modify options for the current scene. Tokens in the parameter list must have full
inline type definitions.

The following options are tweakable:

Option "indirect" "color background" [r g b]

Option "ipr" "integer retrace" [n]
Option "ipr" "integer[2] pixelsamples" [nx ny]

Option "reflection" "color background" [r g b]
Option "reflection" "float envblur" n
Option "reflection" "float envstrength" n
Option "reflection" "string envname" name



AIR User Manual367

© 2001-2014 SiTex Graphics, Inc.

Option "trace" "integer maxtracesamples" [n]
Option "trace" "integer maxshadowsamples" [n]

20.3.23 IrTweakSurface

C: int IrTweakSurfaceV(IPR *ipr, int ntk, char **tk, void **v);

Text: IrTweakSurface parameter list

Use this function to modify surface shader parameters for the selected primitives. Tokens in the
parameter list must have full inline type definitions. The selected primitives need not have the same
surface shader assigned; this function looks for matching parameters in whatever surface shader is
currently assigned to a primitive.

20.3.24 IrWriteImage

C: int IrWriteImage(IPR *ipr, char *filename);

Text: IrWriteImage filename

The command writes the image buffer to an image file.  The file type is determined by the file name
extension.  TweakAIR waits for any pending updates to complete before writing the image.

21 BakeAir for Baking Textures and Meshes

BakeAir is a special-purpose 3D renderer for rendering ("baking") shading and lighting results to
texture maps or meshes.

Baking to Textures

In texture baking mode, BakeAir produces one or more texture maps containing shading and lighting
information for each primitive.  BakeAir is based on Air and fully supports all applicable Air features,
including indirect illumination, ambient occlusion, caustics, area lights, true displacement, and
programmable shading.

Rendered data can include global color, opacity, position, and normal information, as well as indirect
illumination and any user-defined output variable from a surface, displacement, or atmosphere shader.
BakeAir allows considerable freedom in the mapping from primitives to texture maps:

· A single primitive can output different channels to different maps
· Multiple primitives can bake into a shared texture.
· The coordinates used for indexing textures can be standard (s,t) or (u,v) coordinates, or any user-

defined 2D texture coordinates.

BakeAir 11 can also bake to PTEX per-face texture maps.

Baking to Meshes

Air 11 introduces a new mode for BakeAir that allows shading computations to be baked to mesh
vertices and exported in various file formats.

See Also

PTEX: Per-Face Texture Mapping



BakeAir for Baking Textures and Meshes 368

© 2001-2014 SiTex Graphics, Inc.

21.1 Applications for Baked Textures

This section lists a few of the applications for BakeAIR organized into three broad categories:
accelerating software rendering, baking maps for hardware rendering, and geometric manipulation.
Examples refer to the bakeexamples directory of the BakeAIR distribution.

Accelerating Software Rendering

BakeAIR can be used to accelerate software re-rendering with a renderer such as AIR by baking
information that does not change from frame-to-frame or shot-to-shot.  Baked data can include

· diffuse illumination
· diffuse color pattern
· indirect lighting
· occlusion
· shadows

Examples:  The occlusion, output, and gourds directories contain examples of using baked data
to accelerate software re-rendering.

Baking Maps for Hardware Rendering

Most recent graphics hardware supports real-time rendering with texture maps.  BakeAIR can be used
to prepare maps for a real-time 3D engine for use in games or for visualization for product design,
architecture, and production-planning.  BakeAIR can produce maps containing final shading results,
color patterns, bump maps, normal maps, light maps or maps to modulate any other shading
parameter supported in a 3D engine.  Per-vertex data can be obtained by rendering low-res maps and
extracting vertex data based on the texture coordinates used for baking.

Examples:  The sphere and head directories contain examples of baking information for use with
VRML files.

Geometric Manipulation

In addition to color and lighting information BakeAIR can record geometric information like surface
positions, normals, and tangents, opening up another range of applications.  For example, position,
normal, and tangent maps can be used to place detail objects on surfaces.  Think of adding fur or
horns to a monster, or placing grass or trees on rugged terrain.   Because BakeAIR supports true
displacement, objects can be positioned correctly on displaced geometry.  As another example, an
object whose texture coordinates map into the unit square can be stored in a texture (position) map,
and reconstructed using displacement with a renderer such as AIR.  Two objects stored in texture
maps can be morphed by simply interpolating the texture lookup and using displacement.

Examples:  The fuzz directory contains simple examples of positioning curves on surfaces used baked
geometric information.

21.2 Baking Textures with BakeAir

This section describes the technical details of configuring a scene for baking textures with BakeAir.
Your plug-in or application may provide a simpler interface for creating and utilizing baked textures.

To prepare a scene for baking:

· Define one or more maps to bake (file name, data values, map size, and image quality)
· Choose a point of view in light of its effect on tessellation



AIR User Manual369

© 2001-2014 SiTex Graphics, Inc.

· Select the texture coordinates used for indexing the bake maps
· Assign one or more bake maps to each primitive

Displays as Texture Maps

The Display command defines a new texture map to be rendered with the current scene:

Display "name" "driver" "data"
   "float[2] exposure" [gain gamma]
   "float[4] quantize" [zero one min max]
   "string coordinatesytem" [name]

The new display inherits the current Format, PixelSamples, PixelFilter, Exposure, and
Quantize settings.  Note that pixel filter, pixel sampling, and shading rate settings all behave as one
would expect when baking.  For example:

PixelFilter "gaussian" 2 2
PixelSamples 2 2
ShadingRate 0.5

results in 4 samples per texel (to anti-alias facet edges in texture space) and 2 shading samples per
texel (to anti-alias shading) processed with a gaussian filter with a width of 2 in x and y in texture
space.

Any data value supported by Air can be baked to a texture map, including the standard rgb and rgba
outputs, global variables, and any output variable from a surface or displacement shader.

When baking the global position P and and shading normal N, BakeAir recognizes an additional
"string coordinatesystem" display parameter that specifies the coordinate system in which to
save the baked data.  The default is "current" space; "world" and "object" spaces are also
supported.

Point of View and Tessellation

The camera defined for a conventional rendering of a scene is used by the baker to control adaptive
tessellation of curved surfaces, just as in a conventional rendering.

Since the baker produces texture maps, not images of primitives, you can often get by with a much
coarser tessellation when baking.  A coarser tessellation will use less memory and render more
quickly.  The standard way to decrease tessellation density is by increasing the flatness attribute
setting from the default value of 0.5:

GeometricApproximation "flatness" [1]

Texture Coordinates for Baking

The texture coordinates used for baking are specified with a custom attribute:

Attribute "bake" "string coordinates" ["st"]

Possible values are "st", "uv", or any user-defined varying, vertex, or facevarying variable of type
float[2].

Alternatively, texture coordinates may be supplied as two arrays of floats:

Attribute "bake" "string xcoordinate" ["u0"]
Attribute "bake" "string ycoordinate" ["v0"]



BakeAir for Baking Textures and Meshes 370

© 2001-2014 SiTex Graphics, Inc.

The texture coordinates used for baking should map primitives into the unit square in texture space.
More than one primitive may bake into the same map, but no two points (on any surface) should share
the same texture coordinates in a single map.  In other words, a surface should not overlap itself or
other surfaces in texture space.

Assigning Maps to Primitives

There are two methods for assigning bake maps to a primitive.  The first method is to provide extra
parameters in the primitive's variable list of the form:

"constant string bakemap_data" "mapname"

where data and mapname match one of the Display calls previously defined.

The second method is to provide a list of bake maps in the following attribute:

Attribute "bake" "string bakemaps" "list,of,maps"

where each map name corresponds to one of the Display calls in the scene.

Baking

Once the scene has been configured for baking, start BakeAir with the scene name:

bakeair myscene.rib

Beginning with Air 14, BakeAir renders baked maps in tiles, just like a regular image is rendered with
Air.  The tile or bucket size can be set with

Option "bake" "bucketsize" [64 64]

Tiled rendering is not supported if the wrap border option is enabled or when writing to a PTEX file.
Tiled rendering should in general improve performance and reduce memory requirements when baking
large maps.

Baked Texture Padding

In some cases a baked texture map may contain unrendered pixels.  Unrendered pixels that border
rendered pixels may need to be filled in to avoid rendering artifacts when using the maps.  BakeAIR
can automatically fill-in the border around rendered regions in the texture map by replicating pixels.
The width of this border can be set with

Option "bake" "float border" [1]

Setting the border width to 0 disables padding of the rendered texture.

In some cases it may be useful to have the border filling wrap around in texture space, which can be
enabled with:

Option "bake" "integer borderwrap" [1]

This option may be useful when baking Rhino polymeshes

See Also

Lighting -> Baking Shadows and Illumination



AIR User Manual371

© 2001-2014 SiTex Graphics, Inc.

21.3 Baking PTEX Textures with BakeAir

BakeAir 11 and later can bake data to PTEX per-face texture maps for polygonal and subdivision
meshes.

For PTEX textures, the texture size for an individual face is computed automatically based on the
following option:

Option "bake" "float texelsize" [n]

which gives the size of a single texel in world-space coordinates.  A smaller texelsize will produce a
higher-resolution (and therefore more detailed) map for each face.

Baking to PTEX also requires the following attribute for the baked objects:

Attribute "render" "integer ptex" [1]

The PTEX display driver accepts two additional parameters in the Display parameter list:

"float half" [1]

enables saving data as 16-bit floating point numbers ('half' precision).  The display output
quantization should also be set for float precision when saving half data.

"float makemipmaps" [1]

enables mip-map generation for the created PTEX file.  Each face map will be stored at multiple
resolutions for faster, higher-quality rendering.

21.4 Writing Bake-Aware Shaders

With a little effort many shaders can be organized to work with the baker and baked maps.  Consider
the following shading language snippit:

surface bakingsample(
    string bakemap___diffuse = "";
    output varying color __diffuse = 0;

 /* other parameters... */
)
{

    if (bakemap___diffuse!="") && (isbaking()==0) {

      /* use baked values, assuming baking coordinates are (s,t) */

      __diffuse = color texture(bakemap___diffuse,s,t);

    } else {

      /* calculate value for use by the shader and possible baking */

      normal Nf;
      Nf = faceforward(normalize(N), I);
      __diffuse = diffuse(Nf));



BakeAir for Baking Textures and Meshes 372

© 2001-2014 SiTex Graphics, Inc.

   }

   /* rest of shader using __diffuse */
}

If a bake map is provided and the scene is being rendered conventionally (isbaking()==0), the
shader will use the values stored in the map.  Otherwise, the diffuse value is calculated normally and
saved in an output variable, making it available for baking.

The output directory in the baker examples contains a scene illustrating use of a baker-aware
shader.

21.5 Baking Meshes with BakeAir

BakeAir 11 introduces a new mode for baking shader output values to mesh vertices.

Enable mesh baking with the following option:

Option "bake" "bakemesh" [1]

or use the -bakemesh command-line switch:

bakeair -bakemesh myscene.rib

A baked mesh is exported to the file specified for geometry export:

Attribute "render" "string meshfile" "filename"

When baking meshes, you will typically want to export RIB files.

The values to be saved at each vertex are specified as a comma-separated list:

Attribute "render" "string meshoutput" "list,of,outputs"

Each vertex value is formatted as:

destination=source

where destination is the variable declaration that will appear in the output file, and source is a
declaration defining the data source.  Supported sources are any output variable from a surface or
displacement shader and the global Ci color variable.  The default output list is:

Attribute "render" "string meshoutput" "varying color Cs=varying color
Ci"

For meshes exported in PLY format, the Cs output variable is emitted as per-vertex color values (with
red, green, & blue channel labels).

An vertex variable can also reference a component of a shader output parameter, e.g.,

Attribute "render" "meshoutput" "float prim_occ=Ci[0]"

By default a mesh will always include normal (N) and texture coordinate (st) data.  You can exclude
one or more primitive variables from the exported mesh with:

Attribute "render" "string meshexclude" "list,of,ids"



AIR User Manual373

© 2001-2014 SiTex Graphics, Inc.

Tessellation

When baking a mesh, you may wish to use the new edge length attribute introduced in BakeAir 11 to
help control the density of the exported mesh:

GeometricApproximation "edgelength" [n]

gives the max edge length in the tessellated mesh (in object space).

Shader Support for Baked Meshes

The following Air shaders can take advantage of baked mesh data:

· The occlusionpass, massive_occlusionpass, envlight, & massive_envlight shaders use occlusion
values stored on a mesh in a "float prim_occ" variable

· The indirect light shader and IndirectPass surface shader to use baked mesh "color
prim_indirect" data for indirect light if available

· The VTranslucent and VTranslucentMarble surface shaders to use a diffuse result baked to "color
prim_diffuse" if available

Examples

Sample scene files can be found in:

$AIRHOME/examples/bakeexamples/bakemesh

22 Massive

Massive is the premier 3D animation system for generating crowd-related visual effects for film and
television.  This section describes tips and tools for rendering Massive scenes with Air.

More information about Massive can be found on the Massive Software web site:

www.massivesoftware.com

Tips for using Massive with Air

· Rendering with Air from Massive
· Command Line Rendering of Massive Scenes
· Display Customization and Multipass Rendering
· massrib

· Shading and Lighting in Air Space
· Ambient Occlusion in Massive
· Mattes, Layers, and Groups
· Eliminating Shadow Artifacts on Terrain

· Automatic Level of Detail
· Massive Agent Light Tool (malt)
· Optimization Tips for Massive Scenes
· Rendering a Depth Pass

· Adding a background image
· Rendering Massive Agents with Maya & MayaMan



Massive 374

© 2001-2014 SiTex Graphics, Inc.

22.1 Rendering with AIR from Massive

Rendering a Massive scene with AIR requires several steps:

· Create one or more render passes.
· Create one or more "renders".  Each render is associated with a render pass.
· Assign shaders to agents, terrain, and lights for each pass.
· Export files used for rendering with the Sim dialog.
· Render using the resulting exported files.

Creating a Render Pass

· In the Options menu select Render to display the Render dialog.
· Choose the renderpasses tab and click add to create a new pass.
· Change the renderpass name to beautyAir by typing in the top text box.
· Change the renderer for the pass to Air using the selection list next to the render caption.

Creating a Render

The next step is to create a "render" with which to associate the render pass.

· Select the render tab and click add to create a new render.
· With the new render selected, click on the parameters page.
· Change the associated render pass for the new render to beautyAir.

· Use the output ribs entry to enter the path and file name specification for the exported rib file that
will be used for rendering.

Important: the export directory must exist for the scene export to succeed.  If the directory does not
exist, you'll need to create it outside of Massive.

The remainder of the parameters dialog allows you to customize other aspects of the rendering, such
as the image size.

Assigning Shaders

Massive allows custom shaders to be assigned to agents, terrain, and lights on a per-pass basis. If no
custom shader is assigned, Massive will translate the basic shading and lighting information to a
standard AIR shader.

Saving Simulation Data

In order to render a Massive scene with AIR, the simulation data must first be exported as a set of files.

· From the Run menu select Sim to display the Sim dialog.
· In the list of Outputs, select the sims button and choose an appropriate output path for the sims

export.  Note that the export directory must exist; Massive will not create it for you.
· Select the ribs button and provide an output path and file specification for the exported rib files.
· Next to the ribs export path, change the DynamicLoad option to RunProgram for Air.
· If the agents have cloth, select the cloth button and provide an export path for cloth files.
· In the list of renders at the bottom of the dialog, select the Air render.
· Choose a start and end frame at the top of the dialog.
· Click go to export the files required for rendering.

Rendering



AIR User Manual375

© 2001-2014 SiTex Graphics, Inc.

The scene is now ready for rendering using the rib files specified in the output ribs section of the render
dialog. Massive creates a small batch file in the output directory for rendering the frames. Alternatively,
the frames can be sent to a render farm using appropriate software.

To render agents the ribs generated by Massive use a small procedural primitive (a program) to
generate agents on-demand. That procedural and the agent data must be available to all machines
used for rendering. If changes are made to an agent inside Massive, the agent must be re-saved for
the changes to show up in a rendering. Some older sample agents included with Massive must be re-
saved to render properly even if no changes have been made to the agents.

AIR 8 allows a frame sequence to be rendered with simple frame number substitution.  For example,

air -frames 8 10 scene#f.rib

would render scene8.rib, scene9.rib, and scene10.rib.   The frame number pattern can also
be zero-padded:

air -frames 8 10 scene#3f.rib

would render scene008.rib, scene009.rib, and scene010.rib.

22.2 Command Line Rendering of Massive Scenes

The scene files generated by Massive can be rendered by invoking AIR from a terminal window or
command shell. An individual frame can be rendered by providing the name of the main rib file as an
argument to air:

      air rib/frame0001.rib

AIR accepts multiple rib files on a single command line. Multiple files are processed in order from left
to right. Additional small files with RIB commands can be used to customize a rendering without
modifying the main scene file. For example, one could use the small file quant16.rib to render an
output image with 16-bit values:

      air quant16.rib scene.rib

Command Line Switches

AIR provides many command line options for customizing the renderer's behavior without modifying
the main rib file. A list of command line options can be printed with:

      air -

A list of options with brief descriptions can be found in the Reference section of this manual. This
tutorial introduces a few of the more commonly used options.

Multithreaded Rendering

The number of threads can be set with a -p or -threads option:

      air -p 2 rib/frame0001.rib

The default number of rendering threads is equal to the number of detected processing cores.

Image Size and Output Destination



Massive 376

© 2001-2014 SiTex Graphics, Inc.

Use -res to override the image width and height set in the rib file:

      air -res 320 240 scene.rib

The output image file generated by the rendering can be set with -file:

      air -file occlusion.tif scene.rib

The image type is determined by the file name extension. To force output to the AIR Show framebuffer
instead of to a file, use the -d switch:

      air -d scene.rib

Pixel Samples and Shading Rate

AIR has two main controls for image quality. The pixel samples option determines the number of times
the scene geometry is sampled per pixel. E.g., a pixel samples setting of 4 will use a 4x4 grid of
samples at every pixel. Use -samples to override the pixel samples setting on the command line:

      air -samples 4 scene.rib

Increase the number of pixel samples to improve the quality of geometry sampling.

The shading rate determines the shading quality of an image. Shading rate is defined as the area in
pixels covered by a single shading sample. A lower shading rate produces a higher quality image. For
example, a shading rate of 0.25 will produce 4 shading samples per pixel. The -sm command line
option is a multiplier for the shading rate setting in the rib file:

      air -sm 0.25 scene.rib

Bucket Size and Bucket Order

By default AIR renders an image in 32x32 pixel tiles or buckets, one row at a time top to bottom. Using
a smaller bucket size may reduce peak memory use and provide better load balancing with multiple
threads. Set the bucket size with -bs:

      air -bs 32 scene.rib

Rendering by column instead of by row can also help minimze memory use for crowd scenes. Use -
ltor or -columns to render in columns, left to right:

      air -ltor scene.rib

Surface Shader Override

The -surf switch overrides all Surface shaders declared in the rib file with the alternate shader
provided. Alternative surface shaders can be used for rendering multiple output passes from a single
scene file. E.g.,

      air -surf occlusionpass -file occlusion.tif scene.rib

A related option, -nosurf, suppresses all Surface shaders in the scene file, rendering the scene with
the defaultsurface shader which provides simple shading based on the surface normal. The nosurf
option is useful for quick tests and for debugging. For example, if your scene is rendering black,
rendering with -nosurf will indicate whether the agents are missing or just lacking illumination.

Statistics



AIR User Manual377

© 2001-2014 SiTex Graphics, Inc.

Rendering statistics can be enabled with -stats:

      air -stats scene.rib

Rendering Multiple Frames

AIR 8 allows a frame sequence to be rendered with simple frame number substitution.  For example,

air -frames 8 10 scene#f.rib

would render scene8.rib, scene9.rib, and scene10.rib.   The frame number pattern can also
be zero-padded:

air -frames 8 10 scene#3f.rib

would render scene008.rib, scene009.rib, and scene010.rib.

See Also

Command Line Switches

22.3 Display Customization and Multipass Rendering

The output image or images generated by a rendering are defined by one or more Display calls in a
scene file. The Render dialog in Massive allows you to set up a single Display call that will generate an
8-bit image with 4-channel output (rgba). This standard output can be customized and enhanced with
the use of additional rib commands in an auxilliary text file that is passed to the renderer prior to the
main scene file.

Quantization for the Main Display

The output data type for the main display call can be changed from 8-bit to 16-bit or floating-point using
the Quantize rib command. For 16-bit data (quant16.rib):

Quantize "rgb" 65535 0 65535 0.5
Quantize "rgba" 65535 0 65535 0.5

For floating-point data (quantfloat.rib):

Quantize "rgb" 0 0 0 0
Quantize "rgba" 0 0 0 0

A sample command to render 16-bit output might be:

      air quant16.rib scene.rib

When rendering 16-bit and floating-point images be sure to use a file format that supports the
corresponding data type. 16-bit images are supported by the PNG, PSD, SGI and TIFF formats.
Floating-point data is supported in the TIFF, OpenEXR, and HDR formats. AIR Show can display
images with 8-bit, 16-bit, or floating-point data.

Multipass Rendering with Multiple Displays

AIR provides two complementary features that enable multipass rendering:

1. Multiple images can be produced from a single rendering by providing additional Display calls



Massive 378

© 2001-2014 SiTex Graphics, Inc.

with the file name prepended with a +.
2. Any output variable from a surface shader can be saved in an image.

Most AIR surface shaders provide a standard set of color output variables:

__ambient
__diffuse
__specular
__reflect
__refract
__incandescence
__constant

__diffuse is further broken down into:

__diffuse_unshadowed
__shadow
__indirect

These extra output variables (also sometimes referred to as arbitrary output variables or AOVs) can be
saved using an appropriate Display call. A sample rib file that saves diffuse and specular passes in
addition to a beauty image would look like:

 Display "mp_beauty.tif" "file" "rgba" "quantize" [0 255 0 255]
 Display "+mp_diffuse.tif" "file" "varying color __diffuse" "quantize" [0
255 0 255]
 Display "+mp_specular.tif" "file" "varying color __specular" "quantize"
[0 255 0 255]
 Option "render" "commands" "-Display"

The last line is important: it tells AIR to ignore subsequent Display calls in the RIB stream. Save the
above to a text file, say displays.rib, then render with

air displays.rib massivescene.rib

You can save 16-bit or floating-point data instead of 8-bit data by changing the "quantize" parameters.
For 16-bit output:

      "quantize" [0 65535 0 65535]

For floating-point output:

      "quantize" [0 0 0 0]

The frame number can be included in a Display call with #nf where n is the number of digits. E.g.,

      Display "beauty_#4f.tif" "file" "rgba"

would render to

      beauty_0021.tif

for frame 21.

Multiple Outputs in a Single Image

Instead of generating a separate image for every output variable, multiple output values can be saved
in a single file to formats such as TIFF, OpenEXR, and PSD that support more than 4 channels per



AIR User Manual379

© 2001-2014 SiTex Graphics, Inc.

image. To save more than one value in a single image, provide a comma-separated list of output
variables in the Display call. For example:

     Declare "__diffuse" "varying color"
     Declare "__specular" "varying color"

     Display "multi.psd" "file" "rgba,__diffuse,__specular"

Display Templates

The AIR distribution includes 3 template files with Display calls for rendering 8-bit, 16-bit, and floating-
point output:

     displays8.rib
     displays16.rib
     displaysfloat.rib

These templates can be found in $AIRHOME/archives.  They can be customized by adding or
removing # symbols at the beginning of Display lines to enable or disable the corresponding output
image.

As-is the templates render TIFF files. Change the extension of the image file name to select a different
image format.

To render to AIR Show, change the output driver name from file to framebuffer.

See Also

Output

22.4 massrib

Massrib is a command-line tool for manipulating the rib files produced by Massive.

Note: Massrib is no longer needed to render Massive scenes with Air on Windows now that Massive
and the Massive procedural primitive run under Windows.

Massive uses a procedural primitive to generate the members of a crowd at render-time, which is very
efficient but not easy to customize. The main function of massrib is to convert the Massive procedural
calls to a plain binary or text rib file. The resulting "flat" rib file can be rendered without access to the
Massive scene files or Massive procedural. A flat rib is also amenable to further postprocessing, since
it is just a plain rib file.

There are several disadvantages to using a flat rib. First, the flat rib files themselves can be rather
large. Second, the procedural method of crowd-generation employed by Massive allows AIR to render
huge scenes very efficiently, since each agent is generated only as (and if) it is needed. If an agent
does not need to be ray-traced, AIR can also dispose of an agent as soon as it has been rasterized by
the scanline renderer. When rendering a flat rib, AIR will load all agents which will consume more
memory. Even with a flat RIB, AIR should be able to render many hundreds to thousands of agents
before running out of memory.

Usage

massrib render.0000.rib

Given a source rib name, massrib produces a "flat" rib with the same name in an output directory.  By



Massive 380

© 2001-2014 SiTex Graphics, Inc.

default the output directory is a massrib subdirectory of the current directory, which massrib will
create if necessary.  An alternate output directory can be specified using the -outdir option:

massrib -outdir /usr/local/tmp/flat render.0000.rib

The simplest way to use massrib is to convert the main scene rib generated by Massive.  The resulting
flat rib will include the agents and terrain in a single file.  You can also convert only the agent archive,
producing an archive with just the agents for inclusion in a scene generated in another application.
Multiple files can be processed using simple wildcards.  E.g.,

massrib render.*.rib

Setting Massive Procedural Options

The Massive scene file includes an additional call to the procedural primitive that sets certain options
such as motion blur and pass type for subsequent agent calls to the procedural primitive.  In the
current Massive version the call to set procedural options appears after the calls to create the agents in
the rib stream, which means that massrib generates the agents before the options have been set.  To
work around this problem, massrib includes a -massopt command line option that can be used to
provide option information which massrib will use to initialize the procedural primitive.

To find the Massive procedural options, look at the bottom of the main scene rib for a line that looks
like:

Procedural "RunProgram" ["run_program.exe" "options motion_blur off
render_pass beauty air "]
[-2250.06 2249.94 -262.813 281.777 -2250.36 2249.64]

The second string enclosed in quotes contains the options.  Pass that entire string (including the
quotes) to massrib with -massopt:

massrib -massopt "options motion_blur off render_pass beauty air "
render.0000.rib

The options should be the same for every frame in a sequence.  By default massrib will look for the
procedural primitive in /usr/local/massive/bin.  If Massive is installed in a different location,
include a -procpath option prior to the -massopt option with the path to the Massive procedural.

Additional Command Options

-ascii

By default massrib produces a rib file in binary format for compactness.  Use -ascii to generate a
plain text rib file.

-mapdir olddir=newdir

This option allows path and file references in the source scene to be remapped.  For example, with
the following massrib invocation:

massrib -mapdir /usr/local/texture=i:/texture

a reference in the source rib file to

/usr/local/texture/shirt.tif

would become



AIR User Manual381

© 2001-2014 SiTex Graphics, Inc.

i:/texture/shirt.tif

in the output rib file.  Useful for changing texture references for rendering under Windows.

-optrib ribfilename

This option inserts additional rib commands from the specified file into the output stream just prior to
the WorldBegin statement  Useful for adding custom options and attributes to a scene.

Start massrib with no arguments to display a list of command line options.

22.5 Shading and Lighting in Air Space

A file Massive rib file that has been converted with massrib can be moved to Windows and edited with
Air Space, the standalone shading and lighting tool included with the Windows distribution of AIR.  Air
Space provides an interactive shading and lighting environment utilizing TweakAIR, the interactive
version of AIR.  Air Space provides a simple means of lighting a scene and customizing the shading for
individual agents.  More information about Air Space can be found in the separate Air Space user
manual.

Preparing a Massive Scene for Air Space

When preparing rib export in Massive, make sure the main rib file name is of the form:

basename.framenumber.rib

Air Space looks for a frame number between periods just before the .rib extension.

Creating a New Air Space Project

A new project is created using a single frame as reference for the IPR preview and opengl window.
The shading and lighting in a project can be applied to an entire sequence.  You can change the
reference frame at any time using the Switch Model item in the File menu.

For a new project you will have the option of importing the existing shaders and lights from your rib file,
allowing you to utilize the shaders assigned to agents in Massive.  If your scene contains references to
texture maps, make sure you use the -mapdir option in massrib to remap the texture file references if
necessary.

Note:  distant lights imported from Massive will appear quite small, near the scene origin.

Rendering a Frame Sequence

To render a sequence of frames, select File Sequence in the Animation section of  the Render page
and enter a frame range in the text box, such as

20-30

Click the Render Animation button in the toolbar to render the sequence, or choose Export Animation
from the Render menu to export frames without rendering.  Exported frames reside in a subdirectory of
the current project directory.  For a project named stadium with version number 1, the exported frames
will be, e.g.,

stadium_v1/stadium_v1.0020.rib
stadium_v1/stadium_v1.0021.rib
stadium_v1/stadium_v1.0022.rib
...



Massive 382

© 2001-2014 SiTex Graphics, Inc.

While a sequence is being rendered, it is important not to overwrite the files in the export directory.
You can continue working and rendering in Air Space by incrementing the version number, which will
create a new export directory.  Note that the export directory contains only shading, lighting, and basic
rendering options. The scene geometry is stored in the mapped rib files created from the source ribs,
and those are shared across render versions.

Making Changes to Animation

Air Space stores shading and lighting information in a manner that is independent of the underlying
scene file.  If you make changes to your animation in Massive, you can re-export rib files, convert them
with massrib, overwrite the current ribs used by Air Space, and Air Space will automatically produce
new mapped rib files and apply your current materials and lights to the new simulation.  Use the
Refresh Model button in the Air Space toolbar to reimport geometry from a changed source rib file.

Limitations:

Shadow maps cannot be generated per-frame.  Use ray-traced shadows instead.

22.6 Ambient Occlusion in Massive

AIR provides two common ways of rendering ambient occlusion: a special envlight light shader that
uses ambient occlusion to compute its shadows, and an occlusionpass surface shader.

The envlight and occlusionpass shaders included with AIR rely on attributes and options to control their
behavior. Because Massive does not provide a convenient way of setting custom attributes and
options, we have developed special versions of these shaders - massive_envlight and
massive_occlusionpass - that do not rely on custom attributes or options.

These shaders should not be used with the occlusion prepass. If you wish to use the occlusion cache
with an occlusion prepass, use the standard envlight and occlusionpass shaders with the process
described below under occlusion caching.

For ambient occlusion to function properly, ray-traced shadows must be enabled in Massive's render
dialog.

Shader Parameter Quick Reference

The massive_envlight and massive_occlusionpass shaders add the following parameters to those in
the envlight and occlusionpass shaders:

The main quality control is the samples parameter, which gives the number of rays cast for each
occlusion estimate. Use more rays to produce a smoother image with less noise at the expense of
longer rendering time. It normally makes sense to increase or decrease the number of samples by a
factor of 2.

The maxhitdist parameter sets the maximum distance to search for occluding objects. Lower values
will reduce rendering time as well as noise.

The coneangle parameter gives the half angle in radians of the cone of directions within which
occlusion rays are distributed. The default value of PI/2 (~1.57) distributes rays over a hemisphere.
Use smaller values to concentrate the rays more in the normal direction, producing a more focused
occlusion result.

The shadowbias parameter is used to prevent incorrect ray-object intersections by giving an offset to
add to each ray's starting location.



AIR User Manual383

© 2001-2014 SiTex Graphics, Inc.

AIR 6 introduced a new special screen-space caching mechanism that does not require an occlusion
prepass.  The screen space cache stores an occlusion sample at each pixel and reuses that sample if
possible for nearby shading locations.  You can enable this mode by setting the maxerror parameter to
a positive number, usually 0.2 to 0.5.  A higher value allows AIR to reuse samples more often.  This
new mode produces an appearance similar to rendering without a cache while reducing render time by
10-20% in many cases.

Occlusion Caching with Massive

The occlusion cache accelerates rendering by storing occlusion estimates and re-using them at nearby
locations. Obtaining smooth results with the occlusion cache typically requires enabling the occlusion
prepass. The easiest way to employ the occlusion cache with Massive is to use a small auxilliary text
file with the RIB commands required for occlusion rendering. Here's a sample file for rendering an
occlusion pass:

      # override all surface shaders
      Surface "occlusionpass"
      Option "render" "commands" "-Surface"

      #enable occlusion prepass
      Option "occlusion" "prepass" 1

      #set quality attributes
      Attribute "indirect" "maxerror" 0.1
      Attribute "indirect" "maxpixeldist" 10
      Attribute "indirect" "nsamples" 256

      #set max distance to search for occluding objects
      Attribute "indirect" "maxhitdist" 500

Save the above text in a file called occpass.rib. Then from a command shell render with:

air occpass.rib myscene.rib

You can specify the output image by adding a Display call to the occpass.rib file:

Display "occlusion.#4f.png" "file" "rgb"
Option "render" "commands" "-Display"

When rendering multiple frames you'll need to include a frame block with the frame number in the air
command line to generate a unique image name for each frame. For example:

air occpass.rib {FrameBegin 22} render.0022.rib {FrameEnd}

will render to

occlusion.0022.png

The shell script generated by Massive can be modified to include the additional command line
parameters in the line that begins air. This method can be used to render an occlusion pass with the
RIB files generated for a beauty pass in Massive; there is no need to generate a separate set of RIB
files for the occlusion pass.

The same workflow can be used without the occlusion cache and prepass. To disable the occlusion
cache, change the maxerror value to 0 in the auxilliary rib file. To disable the occlusion prepass set the
prepass option value to 0. Here's a sample rib for rendering without an occlusion cache:

      # override all surface shaders



Massive 384

© 2001-2014 SiTex Graphics, Inc.

      Surface "occlusionpass"
      Option "render" "commands" "-Surface"

      #disable occlusion prepass
      Option "occlusion" "prepass" 0

      #disable occlusion cache
      Attribute "indirect" "maxerror" 0.0

      #set quality attributes
      Attribute "indirect" "nsamples" 256

      #set max distance to search for occluding objects
      Attribute "indirect" "maxhitdist" 500

      Display "occlusion.#4f.png" "file" "rgb"
      Option "render" "commands" "-Display"

Phil's Tips for Occlusion

Veteran AIR and Massive user Phil Hartmann offers the following tips on rendering occlusion:

1. In Massive set the shading rate to 0.25 or 0.5. Set Pixel Samples to 8x8. Set the trace bias in the
range 1 to 10.

2. In the massive_envlight or massive_occlusionpass shaders, set samples to 32 or 64. Set maxhitdist
to 200 to 500 cm.

3. If memory use is an issue, render the occlusion pass separately from other passes with the
massive_occlusionpass shader.

4. To maximize processor usage on a multicore machine, run multiple processes with 1 thread each
rather than a single process with multiple threads.

Selective Occlusion Testing with Groups

Problem: A user wishes to render an occlusion pass with agents and terrain in the same image. Agents
should be rendered with normal occlusion from all geometry. The terrain should show occlusion from
agents but not from the terrain itself.

Solution: Grouping can be used to restrict the objects tested for occlusion as follows:

1. The first step is to assign a group name to the agents by creating a small text file with the following:

Attribute "grouping" "string membership" "+agents"

Assign that text file as a custom rib to the agents in Massive.

2. Assign the (new) massive_occlusionpass shader to the terrain. Set the new shadowgroups
parameter to "agents" to restrict occlusion testing to just the agents.

3. Assign the massive_occlusionpass shader to the agents, leaving the shadowgroups parameter with
its default empty value (so all objects occlude the agents).

See Also:



AIR User Manual385

© 2001-2014 SiTex Graphics, Inc.

Ambient occlusion

22.7 Mattes, Layers, and Groups

This note describes two methods of rendering mattes for Massive scenes with AIR, as well as an
extension of the second method for rendering by layers or groups.

A Simple RGB Matte Shader

The AIR distribution includes a very simple surface shader called rgbmatte for rendering an "rgb" matte
pass in Massive. Since Massive does not allow an object's base color to be changed on a per-pass
basis, this shader provides parameters for directly setting the output red, green, and blue channels.

This shader is about as simple as a surface shader can get:

 surface rgbmatte(float r=0; float g=0; float b=0)
 {
   Oi=1;
   Ci=color(r,g,b);
 }

Rendering Mattes using Groups

AIR allows any object to be assigned to one or more groups. Include an object in a group with

Attribute" "grouping" "string membership" "+mygroupname"

The objects which appear in each output image can be restricted to members of particular groups by
providing a "string subset" parameter with a list of groups in a Display call. Only objects in the listed
groups will appear in the display image; other objects will be treated as matte objects for that image.

These capabilities can be utilized to produce an arbitrary set of mattes for different scene elements in a
single render invocation.

Example: say one wanted to render a matte for agents and a matte for terrain.

Start by creating two small text files, agents.rib, with

Attribute" "grouping" "string membership" "+agents"

and terrain.rib, with

Attribute" "grouping" "string membership" "+terrain"

In Massive assign agents.rib as a custom rib archive to each agent. Assign terrain.rib as the
custom rib archive for the terrain. Sim and generate the usual set of exported rib files.

The final piece is another small text file defining the matte images for agents and terrain,
mattes.rib:

Display "+agent_matte#4f.tif" "file" "a" "string subset" "agents"
"quantize" [0 255 0 255]
Display "+terrain_matte#4f.tif" "file" "a" "string subset" "terrain"
"quantize" [0 255 0 255]

Include mattes.rib as the options rib in the massive render dialog, or pass it on the command line
prior to the main scene file:



Massive 386

© 2001-2014 SiTex Graphics, Inc.

air mattes.rib render0001.rib

This method can be used to render a matte for any desired grouping of scene elements.

Rendering Separate Output Images by Group

The above technique easily generalizes to separating any output variable by group. For example, to
render separate beauty images for agents and terrain, use:

Display "+agent_beauty#4f.tif" "file' "rgba" "string subset" "agents"
"quantize" [0 255 0 255]
Display "+terrain_beauty#4f.tif" "file' "rgba" "string subset" "terrain"
"quantize" [0 255 0 255]

See Also:

  Rendering in Layers

22.8 Eliminating Shadow Artifacts on Terrain

Problem:  When rendering with ray-traced shadows, terrain geometry may exhibit artifacts in the form
of incorrect shadows along the boundaries between polygons.

Solution:

In most cases the shadow artifacts are caused by incorrect traced ray intersections. There are two
solutions:

1. The best solution is to increase the shadow blur setting in the light to at least 0.005. In most
cases that will completely eliminate the problem. (See below for why this works.)

2. Increase the shadow bias, either in the light shader or using the trace bias attribute:

Attribute "trace" "bias" 2

For Massive scenes start with a bias of around 2 and keep increasing until the lines disappear.

Why Increasing Blur Eliminates Artifacts

When shadow blur is less than 0.005, AIR antialiases shadows by distributing shadow sample
positions over the area being shaded. Near polygon edges some of those positions can wind up
"behind" neighboring polygons with respect to the light source. This is more likely to happen with a
coarse polygon representation.

When shadow blur is 0.005 or greater, AIR antialiases shadows by varying the ray direction from the
sample position over the cone angle defined by the blur value only. The sample position is fixed at the
current shading point.

22.9 Rendering Massive Agents with Maya & MayaMan

This page describes how to render Massive agents as part of a Maya scene using Animal Logic's
MayaMan plugin for Maya.

Background

Massive creates two RIB files when it exports a scene for rendering with AIR: a main RIB file



AIR User Manual387

© 2001-2014 SiTex Graphics, Inc.

containing the terrain, lights, and global scene options, and a second RIB file that defines the agents.
The agents file can be rendered as part of a Maya scene with the aid of MayaMan.

Step 1: Modify the procedural search path.

Massive uses a procedural primitive named run_program.exe to generate agents at render time for
AIR. We need to add the location of that program to the procedural search path so that AIR will be able
to find it:

· From the MayaMan menu select MayaMan Globals.
· In the MayaMan Global Options dialog select RenderMan Search Paths.
· Select the Procedural tab.
· Type the path to the bin directory of your Massive installation (which contains the Massive run

program).
· Click Add.

Step 2: Define options for the Massive procedural primitive.

The main RIB file generated by Massive contains a special command that initializes the procedural
primitive with various options for the agents. This line must be duplicated for MayaMan. Look in the
main rib file for a frame and find the line that begins Procedural. Copy that entire line. This line will be
the same for every frame.

· In the MayaMan Globals dialog select the Advanced Options page.
· Scroll down to the section titled User Defined RIB Statements: World and expand it.
· Paste the Procedural declaration you copied above into the text box. Make sure the entire command

line was pasted.
· Click Save User RIB at the bottom of the section.
· Close the MayaMan Globals dialog.

Step 3: Add agents.

· First, create a new simple primitive such as a box or sphere to act as a standin for the agents.
· With the new object selected, add a MayaMan Model Attributes node.
· Select the MayaManAttributes node and expand the section labeled ReadArchive.
· Check Substitute RIB and use the file dialog to choose an agent file generated by Massive. For an

animated sequence, MayaMan will replace a #4f pattern in the archive name with the frame number.
· Make sure the DelayedReadArchive option is NOT checked.

Step 4: Enable motion blur (if applicable).

· In the MayaMan Globals dialog select the Motion Blur options page.
· Check Enable Motion Blur.
· Check Time in Zero to One Range
· Set the Motion Blur Amount to correspond to the motion blur setting in Massive.

You should now be able to render your Maya scene with the agents appearing at render time in place
of the proxy object. The surface and displacement shaders used for the agents will be those configured
for the selected render pass in Massive.

22.10 Automatic Level of Detail

AIR 7 and later can automatically reduce the number of polygons in a polygon mesh based on an
object's on-screen size and other factors. Automatic LOD applies only to polygon mesh primitives.



Massive 388

© 2001-2014 SiTex Graphics, Inc.

Enable automatic level of detail for an object with the following custom attribute:

Attribute "render" "float autolod" [n]

where n gives an error tolerance when simplifying a model. Reasonable values to try are 0.1 to 0.3. A
level of 0 disables automatic LOD.

Automatic LOD is also influenced by the "flatness" attribute:

GeometricApproximation "flatness" 0.5

which gives the maximum difference in pixels between the original surface and the simplified surface.
The default flatness value is 0.5. A value of 1 or 2 will produce smaller final meshes.

Tips

A reasonable set of values to start with are:

Attribute "render" "float autolod" [0.2]
GeometricApproximation "flatness" 1

When applied to cloth, auto LOD may result in clothing that does not cover the underlying limbs. Using
a smaller autolod tolerance may help prevent this condition. Another solution is to use an opacity map
to hide parts of a limb that would be hidden by clothing anyway.

22.11 Massive Agent Light Tool (malt)

AIR 8 includes a new Massive agent light tool (malt) to enable rendering Massive agents with per-
agent lights.  Possible applications include vehicle headlights or crowds carrying torches or flashlights.

The basic idea is to use a piece of standin geometry to represent an agent light, which is converted to
an actual RIB light source by the malt utility prior to final rendering.  The workflow in detail:

1.  Create and position standin geometry for each light associated with an agent.  The shape should be
a pyramid or triangle.  By default malt uses the first vertex as the light position and the average of the
other vertices as a target point for the light.  If the -last command line option is passed to malt, it will
use the last vertex as the light position.

2.  In Massive assign a special surface shader to the standin geometry with the light shader properties.
The AIR distribution includes two "proxy" surface shaders:  proxy_spotlight for the standard spotlight
shader, and proxy_pointlight for the standard pointlight shader.  Most parameters of the proxy shaders
mirror those of the corresponding light shader.  There are a few special parameters:

LightShader - the name of the light shader to use.  Due to a bug in Massive 3.0 that initializes all
string parameters to the empty string, the parameter must be set to "spotlight" for the proxy_spotlight
shader or "pointlight" for the proxy_pointlight shader.

ShowProxyGeometry - set the value to 1 to make the proxy geometry visible in the rendering.

LightMaxDistance - sets the light maxdist attribute defining the range of influence of the light as a
distance from the light source position.  Setting this value appropriately can help reduce render
times.

For initial tests you may also wish to set the falloff parameter to 0.

If the lights are to cast ray-traced shadows, set the shadowname parameter to "raytrace".



AIR User Manual389

© 2001-2014 SiTex Graphics, Inc.

3.  Make sure the proxy geometry is tagged not to cast shadows in Massive.

4.  Sim to export rib files as usual.

5.  Use the malt tool to create agent lights for each frame:

malt scene0001.rib

The malt tool parses through all the agent data looking for objects with a "light" surface shader.  For
each such object, malt creates a light in an agent light file named "scene0001_agentlights.rib".  After
processing the agents, malt re-writes the main scene file, adding a reference to the agent lights just
after the WorldBegin statement.

6.  Render the main scene file as usual.

22.12 Rendering Massive Agents in Rhino

This note describes how to include Massive agents when rendering a Rhino model with the RhinoAIR
plug-in. This method uses the new MassiveAgents instancer shader to add agents at render time.

Preliminary: Massive uses a small program called runprogram.exe to create agents at render-time. AIR
must be able to find the runprogram.exe file at render-time. The easiest way to ensure that is to copy
the runprogram.exe file from your Massive installation to the procedurals directory of your AIR
installation.

1. Select the terrain object in the scene (or another large object if there is no terrain). Display the AIR
Material page for the object. Assign the MassiveAgents shader as the instancer shader.

2. Set the instancer Extent to a value such that the terrain object bounding box incremented by the
Extent would encompass all the Massive agents in the scene.

3. Set the Agent archive prefix parameter to the file name of the agent archives exported from Massive
minus the frame number and .rib extension.

4. Set the RenderPass parameter to the name of the render pass you set up for Air in Massive.

5. Set the Rotate x value to 90 to compensate for the different up directions in Rhino and Massive (the
Y axis is up in Massive; the Z axis is up in Rhino).

6. Use the Frame offset value to pick the Massive agent frame that should correspond to the first
Rhino frame in an animation.

7. Use the Scale parameter to uniformly scale the agents to match the scale of your model.  By default
agents in Massive are assumed to be modeled in units of centimeters.

8. To render an animated sequence, you must enable one of the animation modes in RhinoAir on the
Air Animation page of the Rhino options dialog. If your scene does not employ any other animation, set
the Animation mode to Turntable with a Max angle of 0.

9. Render to see your Rhino model with Massive agents generated at render-time.

See Also

MassiveAgents instancer shader



Massive 390

© 2001-2014 SiTex Graphics, Inc.

22.13 Optimization Tips for Massive Scenes

1. Make agents and terrain invisible to all ray types if the scene does not use raytracing. When
rendering out of Massive, unchecking the Shadow control on the Render page should be sufficient.

There are two easy ways to see whether objects are being retained for ray tracing:

In the Air Show status bar, the 5th section from the left will contain S, R, or I if any objects are visible
to shadow, reflection, or indirect rays respectively.

The statistics generated by Air report the memory used by objects retained for ray tracing. Statistics
can be enabled with the -stats command line switch.

2. Render by column instead of by row.  By default Air renders an image from top to bottom, one
row of tiles at a time. For a typical wide crowd shot peak memory can often be reduced by instead
rendering from left to right in columns. The bucket or tile order can be changed to left-to-right using the
-columns command line switch or the following option:

Option "render" "string bucketorder" "columns"

3. Use a smaller bucket size to reduce memory use and improve load balancing when rendering with
multiple threads. The bucketsize can be set using the -bs command line switch:

air -bs 16 scene.rib

or using the following option:

Option "limits" "bucketsize" [16 16]

The default bucket size is 32 x 32 pixels.  A smaller bucket size will typically increase render time, so
use as large a bucket size as feasible.

4. Convert all texture maps to Air texture files with mktex or mktexui to optimize memory use and
texture quality.

5. Enable mesh data simplification with

Attribute "render" "integer simplifyfacedata" [1]

This will normally result in lower memory use for Massive agents.

6. Use multiple instances of the Massive procedural primitive (Air 10 and later)

Massive uses a RunProgram procedural primitive to generate agents at render time.  That procedural
can often become a bottleneck in multithreaded rendering.  You can allow multiple instances of the
RunProgram to run concurrently by increasing the maximum number of instances allowed with:

Option "limits" "runprogramthreads" [nmax]

Air will automatically send the scene options string to each instance of the Massive procedural
primitive.



AIR User Manual391

© 2001-2014 SiTex Graphics, Inc.

22.14 Rendering a Depth Pass

There are several ways to render a depth pass with Air. Here are two that work with an existing set of
rib files (so you do not need to set up a separate render pass in Massive or export an additional set of
files).

Method 1

Save the standard depth buffer z as the output image. First, create a small text file with the following
commands:

Display "depth#4f.tif" "file" "z"
Option "render" "commands" "-Display"
Option "render" "zrange" [1000 10000]

The zrange option sets the minimum and maximum depth values which correspond to 0 and 1
respectively in the exported z value. If you wish to save raw depth values, omit the line that sets the
zrange option.

Then render from a command shell including the extra file prior to main scene name:

air zdepth.rib scene0001.rib

For a sequence use:

air -frames 1 100 zdepth.rib scene#4f.rib

Method 2

Render a depth gradient using Air's depthpass surface shader. As in method 1, first create a small text
file with a few RIB commands:

Display "depth#4f.tif" "file" "r"
Option "render" "commands" "-Display"

Surface "depthpass"
  "mindistance" 1000
  "maxdistance" 10000

Option "render" "commands" "-Surface"

Then include the extra file on the command line:

air depthpass.rib scene0001.rib

22.15 Adding a background image

It may sometimes be useful to render a preview image with Massive that includes a background plate.
The Massive camera node includes an option to specify a background image, but that setting is not
exported to rib for rendering with Air.  Hopefully Massive Software will add this feature in a future
release; until then, here are a couple alternatives:

Option 1:  Use a small options file with an imager shader to add a background image:

· Create a small text file with the following imager declaration:



Massive 392

© 2001-2014 SiTex Graphics, Inc.

Imager "VBackdrop" "string TextureName" "filenameofbgimage"

· Enter the options rib file name as the "options rib include" entry in the 'render parameters' tab of the
renders dialog.

Drawback:  the imager shader will be included in the rib export for preview rendering and normal
rendering.  If you do not wish to include the background image in final rendering, you'll need to remove
the options reference prior to exporting ribs for the final render.

Option 2:  Use Air Show to view the rendered preview image with a background plate

Air Show has an option to display a rendered image over a background plate, but that option is only
available for images with an alpha channel.  Unfortunately, the Massive preview image is always "rgb"
only, so again this is not as easy as one might hope.

A solution is to render the preview rib from a command shell and use Air's command line options to
override the output declaration to include an alpha channel.

When rendering a preview image with Air, Massive exports the rib files and other data to
$TEMP/massive.  To render the preview rib from a command shell:

cd $TEMP
cd massive
air -d -mode rgba massive.rib

You can leave the command shell open and re-launch the last command for each preview.  Note that
this means each preview will be rendered twice.  If the preview render takes more than a few seconds,
you can use the red stop button in Air Show to abort the first preview render.  To load the background
image in Air Show, select Load Background from the View menu.  Use the checkered toolbar button to
enable or disabled display of the background for the current image.

23 Houdini

Side Effects Software's Houdini Escape and Houdini Master support Air as a 3rd-party rendering
option.

Version Requirements

The information in this section covers Air 7.0 and later and Houdini 9.1 and later.

23.1 Configuring Houdini for Air

Set Air as the default RIB Renderer

Create a HOUDINI_DEFAULT_RIB_RENDERER environment variable with the value

air6.0

Add Air Shaders to Houdini

Air ships with a set of dialog scripts that make it easier to use Air shaders with Houdini.  To add the



AIR User Manual393

© 2001-2014 SiTex Graphics, Inc.

dialog scripts to your Houdini installation, copy the contents of the directory:

$AIRHOME/houdini/shop

to the shop directory in your Houdini installation.  If the shop directory already contains files named
"SHOPsurface", "SHOPdisplace", "SHOPfog", or SHOPlight", append the Air versions of these files to
the existing files.

When you re-start Houdini, the AIR shaders should appear in the list of generators.  Each Air shader
will have a prefix of air_.

Preview Air Shaders in Houdini

Air shaders to be previewed in Houdini by defining a HOUDINI_VIEW_RMAN environment variable with
the value air.

Air 7.0 and later for Windows ship with a custom display driver used to send the preview image to
Houdini.  With earlier versions of Air or Linux, you will need to run the proto_install utility included with
Houdini and install the renderman display driver.  Remember the installation location you select.  Then
copy the display driver file from the installation location to the displays directory of your AIR
installation.

Update Air Output Dialog Script

When a new RenderMan output operator is created in Houdini with Air as the default renderer, Houdini
automatically creates a dialog for setting basic rendering parameters and custom options.  That dialog
has been updated with Air 7 release for Houdini 9.1.  Compare the dialog script in the Air distribution:

$AIRHOME/houdini/air6.0.ds

with the one in your Houdini installation:

$HFS/houdini/soho/parameters/air6.0.ds

and keep whichever is more recent in your Houdini installation.

23.2 Rendering with Air from Houdini

To render with Air from within Houdini 9.1 or later:

· Display the Output network in a pane, and add a RenderMan generator, which should appear as an
operator named rib1.

· Display the parameters for the rib1 operator.

· On the Main page of the parameters dialog, make sure the Render Target is set to AIR 6.0.
· Set the Camera control to the desired camera to use for rendering.
· To render the scene:

Click the Render button in the rib1 properties dialog, or

In the Houdini Render menu, choose Start Render -> rib1.

Note that by default primitives in Houdini will not have any surface properties defined, so all surfaces
will appear with a simple default surface shader that shows the geometry but no other shading
details.

· By default Houdini starts the Air rendering process and sends the scene directly to Air via a pipe.



Houdini 394

© 2001-2014 SiTex Graphics, Inc.

Alternatively, you can have Houdini create a RIB file that can then be edited and rendered outside
Houdini.  To enable RIB file generation, check the box next to Disk File on the Main page in the
rib1 properties dialog and provide a valid file name.

Applying Air Surface Shaders

To produce usable output you will need to assign an Air surface shader to each object.  The surface
can be a shader that has been written in the RenderMan shading language and compiled for Air, or a
RenderMan shader that has been built in Houdini.

Air comes with dozens of pre-built surface shaders that are ready to use.  In the configuration section
you made those shaders available to Houdini by adding a set of dialog scripts.  To apply an Air surface
shader to an object in Houdini:

· Display the Shop network and bring up the Tool menu.  Under RenderMan Surfaces you should find
many shops with the prefix AIR.  Choose one of these surface shaders to apply to your object.  (If
you do not see any Air shops, return to the Configuration section for instructions on installing the AIR
dialog scripts.)

· Assign the new AIR shop to your object(s) using any of the standard methods of material
assignment in Houdini.

· When an AIR shop is selected you will a list of shader parameters that can be used to modify the
appearance of the shader.  See the Shader Guide section of this manual for more information about
the shaders included with AIR.

Rendering the scene with Air should now use the assigned surface shader.

Image Quality

Basic image quality controls can be found in the Quality sub-tab of the Properties tab of a RIB output
op.

The Pixel Samples setting determines how often the scene geometry is samples per pixel, defining an
NxM grid of pixel samples.  The default setting of 4x4 should be adequate for images without fine detail
or motion blur.  When using motion blur or depth of field, pixel samples may need to be increased to
8x8 or higher.

Shading Quality sets the number of shading samples per pixel (the inverse of the RIB shading rate
property).  More shading samples produce smoother shading at the expense of longer render times.

Pixel Filter and Filter Width specify how the pixel samples are combined to produce final pixel values.
The defautl gaussian filter with a filter width of 2 is somewhat blurry.  For a sharper filter, try a mitchell
filter with a filter width of 4.

Multithreading

Set the number of threads or processors used for rendering on the Render sub-tab under Properties
for a RIB output driver.

Rendered Output

Select the desired output image name and display device on the Display sub-tab of the Properties tab
of the RIB output op.

By default the rendered image will be sent to the standalone Air framebuffer Air Show.  To render to
the Houdini framebuffer, change the Display Device to Houdini.  To render to a file, select the



AIR User Manual395

© 2001-2014 SiTex Graphics, Inc.

display device for the desired file format.

By default the rendered image will be saved at 8-bit precision.  To render at 16-bit precision, change
the Quantize values to

65535 0 65535 0.5

To render a floating-point image, set the Quantize values to

0 0 0 0

Air can produce an arbitrary number of additional output images from a single rendering.  Additional
images typically save arbitrary output values (AOVs) computed by a shader.  Use the AOV tab to add
additional output images.

Reflections

Many Air surface shaders can compute reflections using ray tracing.  For objects to appear in
reflections, they must be made visible to reflection or trace rays.  To enable reflection visibility globally,
go to the Trace sub-tab of a RIB operator's Properties tab, and check Visibile in Reflections.  The
Max Trace Depth control in the same tab gives the maximum number of "bounces" to follow reflection
or refraction rays.

A background color or environment map can also be given that provides a color for traced rays that
miss all objects in the scene.

Motion Blur and Depth of Field

Motion blur and depth of field can be enabled on the Sampling sub-tab under the Properties tab of
the RIB output operator.

23.3 Houdini Lights and Air

Houdini automatically translates Houdini lights when exporting a scene to Air

Ray-traced Shadows

If a Houdini light's Shadow Type is set to Ray-Trace Shadows, Houdini will enable ray-traced shadows
for the light when exporting for Air.  One other attribute needs to be set to make objects visible to
shadow rays.

· Display the Rib output operator in a panel and select the Properties tab.
· Look in the Attributes tab for a property named "Transmission Visibility".  (If the attribute is not

present, you can add it by editing the operator type and finding the attribute in the rendering section
under AIR 6.0/Attributes.)

· Set the value to "Use Os for opacity" or "Opaque to shadows".

Note that as of Houdini 9.1.160, native Houdini lights do not provide much control over ray-traced
shadows.  In particular, there is no control over shadow blur or sampling.  For more control, use a
custom AIR light shader instead (see below for instructions).

Shadow-Mapped Shadows

· Set the light's Shadow Type to Shadow-Mapped Shadows
· Uncheck Transparent Shadows



Houdini 396

© 2001-2014 SiTex Graphics, Inc.

· Make sure the Shadow Softness is set to at least 1.

Using Custom Light Shaders

AIR light shaders can be used in Houdini with the aid of a Light template.  Make sure you have already
installed the AIR shaders for Houdini as described here.

To use a custom light shader:

· In the SHOP network, open the Tool menu, and under the RenderMan Light category, choose an
AIR light shader.  For an initial test, try the AIR point light shader.

· In the parameter list for the point light shader, change the Falloff parameter to 0 to disable intensity
decay with distance.

· In the OBJ network, create a Light Template.
· On the Shaders page of the light template, set the Light Shader value the AIR light shader added

above.
· Move the light template position in a model view so the light is in a reasonable position to illuminate

the scene.
· Render.

To enable ray-traced shadows for a custom light, set the Shadows parameter to the special value
raytrace.  The Shadow blur parameter determines the blurriness or softness of the shadows.  The
Shadow samples parameter sets the number of rays to trace when computing the shadow result.

23.4 Ambient Occlusion with Air and Houdini

Ambient occlusion can be used either as a surface shader or with a light shader.

Air's envlight shader provides occlusion-based shadows with optional image-based lighting.

To use the envlight light shader:

· In the SHOP network, open the Tool menu, and under the RenderMan Light category, choose the
AIR envlight shader.

· In the OBJ network, create a Light Template from Render sub-menu under the Tool menu.
· On the Render tab of the light template, select the Shaders subtab, and set the Light Shader value

to the AIR envlight shader added above.
· Make all objects in the scene visible to shadow rays.  In the parameters window for the RIB output

operator, look under the Properties tab for the Trace sub-tab.  Set Shadow Visibility to Use Os for
opacity.

· Render a test frame.

Occlusion Cache Acceleration

The default settings for ambient occlusion can be slow as Air computes a new occlusion sample at
every shading location.  Using an occlusion cache can greatly accelerate occlusion rendering by
allowing Air to re-use occlusion samples.  To enable occlusion caching:

· In the parameters window for the RIB output operator, look under the Properties tab for the GI sub-
tab.

· Change the Max Cache Error value from the default of 0 to 0.25.
· For best results, also enable the Occlusion prepass.
· Render another test frame.

Occlusion Pass Surface Shader



AIR User Manual397

© 2001-2014 SiTex Graphics, Inc.

As an alternative to the envlight, you can use Air's occlusionpass surface shader to render an
occlusion pass.

See Also

Ambient occlusion

23.5 Global Illumination with Air and Houdini

Global illumination in the form of indirect diffuse illumination can be added to a Houdni scene by
adding an AIR indirect light and enabling controls in the GI section of the rib output operator.

Step 1:  Adding an indirect light:

· In the SHOP network open the Tool menu, and under the RenderMan Light category, choose the
AIR Indirect light shader.

· In the OBJ network, create a Light Template from the Render sub-menu under the Tool menu.
· On the Render tab of the light template, select the Shaders subtab, and set the Light Shader value

to the AIR indirect shader added above.

Step 2:  Configure global GI options and attributes:

· Select the RIB output operator that will be used for rendering.  Under the Properties tab, select the
GI sub-tab.

· Check Visible to indirect rays to make all objects contribute to global illumination by default.
· Render a small test image.

The scene must include some direct illumination in order to see any GI results.

Global Illumination Cache Acceleration

With the default settings indirect diffuse illumination can be quite slow as AIR computes a new GI
sample at every shading location.  Gi can be accelerated by enabling the irradiance cache:

· In the GI subtab, change the Max Cache Error to 0.25 to enable the GI cache.
· For smooth results, check the Indirect Prepass.
· Another test render should finish much more quickly.

The quality of the GI cache is controlled by the Max Cache Error and Max Spacing settings.  Max
Cache Error takes a value between 0 and 1 giving the maximum error allowed when trying to re-use
samples in the cache.  A max error of 0 disables the GI cache.

The Max Spacing value gives the maximum distance in pixels between samples in the cache, ensuring
that all areas of the image receive at least some GI samples.

Global Illumination Background

Use the controls at the bottom of the GI sub-tab to specify incoming illumination from the
"environment" surrounding the scene.  The GI background can be either a simple color or an
environment map.  For an environment map, the map intensity and map blur can also be set.

See Also

Indirect Diffuse Light



Houdini 398

© 2001-2014 SiTex Graphics, Inc.

23.6 Creating Shaders for Air in Houdini

Houdini allows RenderMan-compatible shaders to be built in a manner very similar to building Mantra
shaders.

RenderMan SHOPs are different from Mantra SHOPS.  Mantra cannot render RenderMan SHOPs,
and Air cannot render Mantra SHOPs.

An Air-compatible RenderMan SHOP can be started in two ways:

Method 1:

· Display the SHOP network.
· In the Tool menu, go to the RenderMan Surface item and select the VOP RSL Surface Shader

sub item.

This action provides a bare-bones RenderMan surface shader.  You'll need to edit the network and add
more nodes to create a usable shader.  For example:

· Edit the shader network.
· Go to the Tools menu, Shading section, and add a Lighting Model node.
· Connect the Lighting Model's clr output to the Ci input of the output1 node.  (Ci is the emitted color

result from an Air/RenderMan surface shader).
· Assign your new SHOP to an object and test render to see a basic no-frills surface shader.

Method 2:

· Display the Material Palette
· At the top of the lefthand pane, select RenderMan as the gallery filter to display.
· Look in the General section for a Basic Surface entry and add it to the SHOP list.
· The new SHOP provides a surface shader with some basic controls and hooks into Houdini.

Compiling

Houdini will automatically attempt to compile a RenderMan shader for Air.  If you are using a version of
Houdini prior to 9.1.169, the compile may fail because older version of the hrmanshader utility included
with Houdini are not compatible with Air.  You will need to update the hrmanshader binary (or
hrmanshader.exe) in your Houdini installation with a more recent build in order to compile shaders for
Air.

23.7 Adding New Shaders to Houdini

New shaders that you create can be added to Houdini with the aid of the MakeLIF utility.

24 Tools

The following programs are included in the bin directory of the Air distribution.



AIR User Manual399

© 2001-2014 SiTex Graphics, Inc.

Tool Command Description

Air renderer air 32-bit air binary under Windows
64-bit air binary under Linux

air64 64-bit air binary under Windows

Air Control aircontrol User interface for starting and managing Air render
jobs

Air Point Tool airpt Command-line tool for manipulating 3D point files

Air Show airshow Standalone framebuffer for displaying rendered
images

Air Space airspace Standalone interface for adding materials and lighting
to a model.  See the separate Air Space User Manual
for more information.  Windows only.

BakeAir bakeair
bakeair64

Air texture baking tool
64-bit bakeair binary under Windows

Make LIF makelif Command-line tool for creating help files for shaders

Material Editor airmated Interactive tool for creating and editing Air material
files.  See the separate Air Material Editor User
Manual for more information.

Retexture retexture Interactive tool for editing materials as a post-process.
See the separate Retexture User Manual for more
information.  Windows only.

Shading Compiler shaded Compiler used to compile shaders for use with Air

Shader Info slbtell Command-line tool for querying the parameters of a
compiled shader

Texture Converter mktex Command-line texture conversion tool

Texture Converter UI mktexui User interface for mktex

TweakAir tweakair Interactive version of air

Vortex vortex Distributed rendering tool

Vshade vshade Visual interface for building shaders.  See the separate
Vshade User Manual for more information.

24.1 AIR Control

(Windows only)

Air Control is a simple user interface and render queue for rendering scene files with Air.  Air Control
also accepts rendering jobs submitted from the companion airq batch render command.

To render a single frame:



Tools 400

© 2001-2014 SiTex Graphics, Inc.

· Enter the RIB file name in the Scene control or click the ... button to the right to display a dialog for
choosing a RIB file.

· Set the number of threads to use for rendering.  Note that the Air demo is limited to a single thread.

· If Low priority process is checked, the rendering process will run at a lower Windows priority,
minimizing the impact on the performance of foreground applications such as a modeling program.

· Click the Render button to start rendering.

The rendering job will appear in the list of tasks on the Jobs page.  As the frame renders, you can
check the console on the Jobs page for any error messages.

To rendering multiple frames:

· Enter the RIB file name for one frame in the sequence.  The file name must include a frame number,
left-padded with zeroes.  E.g.,

scene0001.rib

· Check the Frame range control, and enter the first and last frame numbers in the appropriate boxes.

· Click Render.

Submitting Batch Render Jobs

The companion airq program can be used to submit rendering jobs to the Air Control queue from a
script or application.  If Air Control is not already running, airq will automatically start Air Control.

For a single frame, just submit the frame name:

airq scene.rib

The number of rendering threads can be set with a -threads option:

airq -threads 4 scene.rib

For multiple frames, use one of the scene files as the rib name and specify the frame range with the -
frames option:

airq -frames 0 19 -threads 4 scene0001.rib

24.2 AIR Point Tool (airpt)

Airpt is a command line tool for converting and manipulating 3D point sets.  Airpt reads and writes the
same point set file formats as AIR.

Airpt accepts one or more point set files as input.

airpt options pointfile1 ...

Airpt can print information about a point collection and/or create a new output file from a set of input
files.



AIR User Manual401

© 2001-2014 SiTex Graphics, Inc.

Options

-o filename

Specify the name of an output file to which the point set is saved after any modifications are applied.
The point set file format is based on the file name extension.

-info

Print information about the point set including the number of points and the channel names

-rench oldname newname

Rename a channel in the point set.  The new name must not currently be in use by any other
channel.

-delch name

Delete a channel from the point set.  The position channel P and width channel cannot be deleted.

-scalech name scale

Multiplies values in the named channel by the specified scale value.

-maxch name max

Limits the values in the named channel to be less than or equal to the specified maximum.

-minch name min

Limits the values in the named channel to be greater than or equal to the specified minimum.

-range

Prints the min and max value of each channel

24.3 AIR Show

AIR Show is the standalone program that serves as a framebuffer for AIR.  Images rendered to the
"framebuffer" device in AIR appear in AIR Show.  If AIR Show is not running, the framebuffer driver will
automatically start AIR Show on the local machine.

AIR Show is much more than a simple framebuffer:

· As a separate program, AIR Show remains open after a render has completed.  AIR Show can
display any number of rendered images (limited only by available memory).

· Concurrent processes can write to different images in AIR Show

· Rendering processes can write to AIR Show running on any machine on a network.

· Multiple processes can write to different sections of the same image, permitting a single frame to be
rendered over multiple machines

· A sequence of frames can be played as a simple flipbook animation.



Tools 402

© 2001-2014 SiTex Graphics, Inc.

· AIR Show can display 16-bit and floating-point image data, as well as the usual 8-bit data, with an
unlimited number of channels per image.

·  Gamma-correction for display without altering the raw image data that is saved to a file.

·  Image navigation including pan and zoom, toggle between images, wipe between images, and view
individual pixel values

· Special depth map display for previewing shadow maps

· Viewing of stereo images as color anaglyphs (version 5.0 and later)

24.3.1 Image Display

Gamma Correction

AIR Show can gamma correct an image for display purposes without altering the raw image data.  This
capability allows you to view an image properly on your monitor and still save it without gamma
correction as a "linear" image suitable for post processing.

Gamma correction applied in AIR Show is independent of any correction applied by the renderer based
on the Exposure settings in a scene file.  Naturally, you should avoid gamma correcting an image in
both the renderer and AIR Show.  If an image is gamma-corrected in AIR, the framebuffer driver will
automatically set the AIR Show gamma for that image to 1 (no correction).

The gamma correction applied to an image by AIR Show is determined as follows:

1. If an AIRSHOWGAMMA environment variable is defined, that value is the default gamma, otherwise
the default gamma is 1.

2. If a gamma factor is provided using the -g command line option, that gamma becomes the default
for all images.

3. If the display driver call passed to AIR contains a "float gamma" variable, that variable's value
is used for that image only.

Applying gamma correction to an 8-bit image can result in banding artifacts.  If you plan to gamma
correct in AIR Show and not in the renderer prior to quantization, render 16-bit or floating-point data to
avoid banding.

To repeat a point mentioned above, the gamma correction used by AIR Show for display purposes
does not affect the image data that is saved.

sRGB

The latest versions of AIR Show have a new option to apply sRGB gamma correction to an image with
the corresponding toolbar button.  sRGB correction overrides any custom gamma defined for the
image in AIR Show.

Image Background

Images with an alpha channel can be displayed over a background image or pattern by toggling the
background button in the AIR Show toolbar.  By default the background is a simple checked pattern.
Use the Load Background item in the View menu to load an image to use as the background for the
current image.

Multilayer Images



AIR User Manual403

© 2001-2014 SiTex Graphics, Inc.

AIR can render a single image with multiple output values such as diffuse, specular, and reflection
passes.  AIR organizes such an image into multiple layers with layer names displayed in the lower right
section of the AIR Show window.  To view an individual layer, left click on its name.

Composite View

AIR Show 3 introduces a new simple composite view mode for multilayer images.  Click the Comp
button in the AIR Show toolbar to enable composite mode.  The displayed image will then be the sum
of all layers, with each layer's contribution scaled by a weight factor.  In composite view mode, the list
of layers displays the layer weight as a percentage next to each layer.  To adjust the weight of a layer,
left click in the layer name row.  You may need to adjust the width and height of the layer list to
facilitate manipulating the layer weights.

AIR recognizes __shadow and __lights_shadow output values as special layers.  Shadow layers
are assumed to apply to the immediately preceding layer (which should contain the corresponding
unshadowed output).

Histogram

AIR Show displays a histogram for the currently displayed image layer or channel just above the list of
image layers.  For 3-channel layers the histogram shows the luminance distribution.

Status Bar

The status bar at the bottom of the AIR Show window displays the following information about the
active image (from left to right):

· Elapsed time

· Image resolution and data format (8-bit, 16-bit, or floating point)

· Zoom level

· Memory usage:  while a rendering is in progress, memory in use is the amount of memory used by
the rendering process.  Once a render has completed, memory in use reports the memory used to
store the image.

· Ray tracing object retention indicator.  This block contains letters indicating if any primitives have
been stored for ray tracing - S for objects visible to shadow rays, R for objects visible to
reflections, and I for objects visible to indirect rays.  If you are using a particular ray tracing feature,
be sure the corresponding letter is present, indicating that objects are available for interesection
with the corresponding ray type.  Conversely, if you are not using ray tracing features, make sure
than no letters appear, ensuring that AIR will be able to dispose of primitives as soon as they are
processed by the scanline renderer.

24.3.2 View Navigation

Zooming

Click an image with the left mouse button to zoom in and with the right mouse button to zoom out.

Panning



Tools 404

© 2001-2014 SiTex Graphics, Inc.

Scroll bars appear if the image is larger than the window.  The image can be scrolled using the scroll
bars, arrow keys, or by moving the mouse while holding down the middle mouse button.

Syncing Views

If the Sync Views option is checked in the Options menu, AIR Show will synchronize panning and
zooming across images with the same width and height.  With Sync Views enabled, you can pan and
zoom while playing an animation.

Comparing Images

AIR Show provides a couple mechanisms for comparing images.

The jump function can be used to quickly toggle between two images.  Click the Jump button in the
toolbar or press J to jump from the current image to the previously selected image.

The current image and previously selected image can also be compared by wiping between the two
with the mouse.  Hold down the CTRL key and left click and drag from an edge of the view window to
reveal a section of the previous image next to the current image.

Viewing Pixel Values

Hold down the SHIFT key while mousing over an image to see the image channel values at the current
pixel, listed in the upper right region of the AIR Show window.

24.3.3 Depth Map Display

AIR Show has a special display mode for depth maps designed to allow a shadow map to be
previewed by rendering to AIR Show.

Here's a sample depth map display:

AIR Show performs the following image manipulations:

· The bounding rectangle of the non-empty pixels is computed, and the region outside the used
rectangle is colored red.

· Empty pixels within the bounding rectangle are colored purple.
· Depth values for non-empty pixels are displayed using a grey-scale
· The status bar reports the percentage of the total map that is inside the bounding rectangle of the

non-empty pixels.  Low percentages indicate that large sections of the shadow map are unused, and
that the user should consider refocusing the light.

· A warning is issued in the status bar if any pixels along the edges of the image are non-empty.



AIR User Manual405

© 2001-2014 SiTex Graphics, Inc.

24.3.4 Rendering to a Remote Machine

(Not available in the demo version of AIR.)

AIR Show and the AIR framebuffer driver enable the output from a rendering process on one
machine to appear in an AIR Show window on another machine.  The destination machine for
framebuffer data can be set with the -dhost AIR command line option

air -dhost 192.168.1.2 myfile.rib

or with a "host" parameter passed to the framebuffer driver in a RIB file:

Display "remote.tif" "framebuffer" "rgb"
"string host" ["192.168.1.2"]

A host parameter in a Display call overrides any -dhost command line option.  The host
parameter should be the IP address of the host machine in dot-3 notation or a name for a DNS lookup.

AIR Show must already be running on the remote machine.

24.3.5 Framebuffer Parameters

The AIR framebuffer driver accepts several optional parameters that are passed on to AIR Show:

"float gamma" [n]

Sets the gamma correction value for the displayed image.  If provided this parameter overrides the
default gamma in AIR Show.  If omitted, the default gamma in AIR Show is used for the image.

"string host" ["ipaddress"]

Gives the IP address of the machine to which the image data is sent.  If omitted, data is sent to the
local machine.  If data is sent to a remote machine, AIR Show must already be running on that
machine.  The IP address can be in dot-3 notation (e.g., 192.168.1.1) or a name for a DNS lookup.

"float share" [0]

When set to 1, AIR Show will attempt to merge output with that from other processes writing to the
same image.

"integer port" [47349]

Gives the TCP port number to use when connecting to an external display program such as AIR
Show.  The default port number used by AIR Show is 47349.

24.3.6 Command Line Options

The following options may be included on the command line when starting AIR Show:

-res width <height>

Sets the default width and height of the client area of the AIR Show window.  This is the maximum
image size that can be displayed without scroll bars.

-pos left top



Tools 406

© 2001-2014 SiTex Graphics, Inc.

Sets the position of the upper left corner of the display window on the screen.

-g gamma

Sets the default gamma correction applied to images for display.  This options overrides a gamma
defined with the optional AIRSHOWGAMMA environment variable.

-fps framespersecond

Sets the default frames per second for animation playback.  This option overrides the frames per
second defined with the optional AIRSHOWFPS environment variable.

Loading Images at Startup

AIR Show also accepts a list of file names or a wildcard pattern for pictures to load when started from
the command line.

24.3.7 Menus

24.3.7.1 File

Open... (Ctrl-O)

Open a TIFF file saved by AIR. AIR Show can only read uncompressed TIFF files.

Open Sequence...

Open a numbered sequence of image files.

Save... (Ctrl-S)

Displays a file dialog for choosing a file name and saves the current image. The file name extension
determines the file format.

Save All...

Allows all images to be saved at once. A dialog is displayed for choosing an output directory and
display driver. All images are saved to the same directory with the same driver. Each image should
have a different base name.

Save Sequence...

Saves all images as a numbered sequence.

Close (Ctrl-W)

Closes the current image window.

Close Previous

Closes all images prior to the current image in the image list.

Close All

Closes all image windows.



AIR User Manual407

© 2001-2014 SiTex Graphics, Inc.

24.3.7.2 Edit

Copy Crop Coordinates

Copies the crop coordinates for the current selection rectangle as a string. The string is formated as
xmin xmax ymin ymax.

Copy Decal Projection

Copies the transformation matrix that will place a decal within the selection rectangle from the view
of the image as a text string of 16 numbers. This allows the viewport to be used to position decals on
an object.

Annotate...

Add a descriptioin to an image, which is stored by some file formats such as TIFF.

Copy Image (Windows only)

Copies the current image (as displayed) to the Windows clipboard.

24.3.7.3 View

Refresh

Redraws the display window.

Zoom In

Zoom in on an image.

Zoom Out

Zoom out of an image.

Zoom Normal

Restore image view to the default in which one pixel on screen represents one pixel of the image.

Gain

Displays a dialog for setting the gain or intensity multiplier for an image.

Gamma

Displays a dialog for setting the gamma correction factor for the current image.

Pixel Zoom

Opens a separate window that displays the numeric values of the pixel under the mouse pointer

Fit Window to Image

Resizes the AIR Show window to display the current image without scroll bars or margins.



Tools 408

© 2001-2014 SiTex Graphics, Inc.

24.3.7.4 Animate

Frame Rate...

Displays a dialog for setting the playback rate for animation in frames per second.

Play Forward [3]

Play images as an animation once.

Play Backward [#]

Show images in reverse order as an animation once.

Cycle Forward [4]

Cycle images in forward order until stopped by the space bar or stop button.

CycleBackward [$]

Cycle images in backward order until stopped by the space bar or stop button.

Pong [5]

Show images in forward and reverse order alternately until stopped by the space bar or stop button.

Sort Frames

Puts images in alphabetical order based on image name.

Move Frame

Use the subitems to change the position of the current image in the list of images.

24.3.7.5 Sound (Windows only)

Select Sound Clip

Select a WAV file to play with an animation.

Use Sound Clip

Play sound clip when animation is played

24.3.7.6 Options

Always on Top (Windows only)

If checked the AIR Show window remains on top of all other windows on the screen.

Sync Views

Synchronize pan and zoom for same-sized images.

Show Toolbar

Display toolbar.



AIR User Manual409

© 2001-2014 SiTex Graphics, Inc.

Auto Restore Size

When checked a minimized AIR Show window will restore to normal size when a new rendering
starts.  Uncheck this option to allow the window to stay minimized while rendering a sequence of
frames.

Default Gamma...

Sets the default gamma correction applied to images.

24.3.8 Keyboard Shortcuts

Channels

r, R red channel

g, G green channel

b, B blue channel

a, A alpha channel

c, C RGB channels

[ Decrement channel

] Increment channel

Animation

1 Previous image

2 Next image

! First image

@ Last image

3 Play animation once

# Play animation in reverse once

4 Cycle animation

$ Cycle animation in reverse

5 Animate frames in pong mode

space bar Stop animation

7 Swap with previous frame

8 Swap with next frame

& Make first frame

* Make last frame

Miscellaneous

Ctrl-F fit window to image size

J jump to last image viewed

24.4 MakeLIF

MakeLIF is a command-line utility that generates shader help files.  MakeLIF can generate help files in
one of two formats: .LIF shader information files used by the RhinoMan, PaxRendus, and Liquid
plugins, and dialog scripts for use with Houdini.



Tools 410

© 2001-2014 SiTex Graphics, Inc.

Usage

makelif [options] source

Options:
   -o outputdir   output directory for created files
   -ds            create Houdini dialog scripts
   -spdl          create SPDL files for Softimage

   -surf          surface shaders only
   -disp          displacement shaders only
   -light         light shaders only
   -vol           volume shaders only

MakeLIF reads compiled AIR shader (.slb) files and VShade source (.vsl) files.  The source
parameter may be a wildcard pattern.

Creating Houdini Dialog Scripts

When a Houdini dialog script is created, makelif prints a line to the console for adding the dialog to
Houdini.  To make the dialog available in Houdini, add the line to the

$AIRHOME/houdini/shop/SHOPsurface

file for surface shaders (or to the SHOPlight, SHOPdisplace, or SHOPfog files for light, displacement,
and volume shaders respectively).  After modifying the SHOP file you will need to re-start Houdini or
reload the dialogs in Houdini with dsreload before the dialog will appear.

Technical note:

MakeLIF uses the dictionary.lif file in $AIRHOME/viztools as well as some builtin heuristics
to produce a help file for a shader.

24.5 Shading Compiler (shaded)

Before shaders can be used, they must be compiled using the shading compiler shaded.  If you are
using a plugin, the plugin may automatically compile shaders for you.  Otherwise, you can use shaded
from a command prompt.  The command syntax is

shaded <options> filename

where filename is the name of the shader source file.

The shading compiler accepts the following options:

-Dsym
define preprocessor symbol sym

-Dsym=val
define preprocessor symbol sym as val

-Ipath
specify a path to search for included files

-line
print the source code line when an error occurs



AIR User Manual411

© 2001-2014 SiTex Graphics, Inc.

-o filename
specify an alternate output file name.  The default name for the compiled shader is the name of the
shader in the source code with the extension .slb

-noopt
No compile time optimization.

-norto
No run-time optimization.  Air normally optimizes shader code for each instance of a shader.

-cpp
Use an external pre-processor instead of the built-in one.  The pre-processor must reside
somewhere in the search path for executables.

-fover
Enable support for function overloading (multiple functions with the same name but different
arguments and/or return type).  Note that nested functions are not currently supported when function
overloading is enabled.

Default Search Path for Include Files

A default search path for include files can be specified in a SHADECH environment variable.

Pre-processor Definitions

AIR pre-defines two identifiers - AIR and RAYTRACE.  RAYTRACE is intended for conditionally compiling
features that depend on ray tracing and/or the ray tracing extensions supported by AIR.  E.g.,

#ifdef RAYTRACE

  fulltrace(P,R,Crefl,hitdist,Phit,Nhit,Pmiss,Rmiss);

#endif

Some shaders conditionally include ray-tracing features based on the symbol BMRT.  To compile such
shaders for AIR, use the -Dsym option.  For example:

air -DBMRT glass.sl

24.6 Shader Info (slbtell)

Usage:

slbtell [-obi] shader.slb

SLBTell prints a list of all parameters for a compiled shader.  Using redirection, the output can be
saved and included in a RIB file.

If the -o option is specified, the output is in a format similar to that used by the BMRT program
slctell.

If the -i option is included, any parameters of type integer will be declared as such.  By default,
integer parameters are declared as float for backwards compatibility.

If the -b option is included, any parameters of type boolean will be declared as such.  By default
boolean parameters are declared as float for backwards compatibility.



Tools 412

© 2001-2014 SiTex Graphics, Inc.

24.7 Texture Converter (mktex)

Mktex is the command-line texture conversion utiltiy provided with AIR.  The primary purpose of mktex
is to convert source images to the special formats AIR uses for texture, environment, and shadow
maps.  mktex is also useful as a general purpose utility for converting between a variety of image and
data formats.

mktex is a command-line utility that is normally invoked from a command shell.  You can see a
complete list of command-line options by entering mktex with no arguments at a command shell.

The mktexui program provides a user-friendly interface for mktex.

Topics:

Texture Maps
Shadow Maps
Lat-Long Environment Maps
Cube-Face Environment Maps
Mirror Balls and Angular Maps
Compositing
Stitching Images

24.7.1 Texture Maps

Create an AIR texture map from any image format recognized from AIR to an AIR texture map with:

mktex [options] infile(s) [outfile]

Although AIR can use image files directly as texture maps, creating a new texture file has several
advantages:

· The wrapping behavior of the texture map can be specified.
· The new texture file is a mip-map, storing multiple pre-filtered copies of the texture at different

resolutions.  When accessing the texture AIR will use an appropriate resolution based on the region
of the texture visible in the area being shaded, resulting in fewer aliasing artifacts.

· Texture files are tiled, allowing the renderer to selectively load only the portions of an image that are
needed.

· Texture files are compressed to minimize disk space and bandwidth usage.
· AIR limits the runtime memory used by tiled texture maps to a user-defined maximum, dynamically

loading and unloading tiles as needed.

If no output file is given, the name of the output file is derived from the input filename by changing the
filename extension to .tx

Options

-smode, -tmode, -mode (black|clamp|periodic)

-smode, -tmode, and -mode set the wrapping mode for the s-axis, t-axis, and both axes,
respectively.   Each is followed by one of the following possible modes:

black return color (0,0,0) for texture access outside the
range 0..1

clamp clamp the coordinate value to the range 0..1
periodic wrap the texture coordinate; e.g., use s=s-

floor(s)



AIR User Manual413

© 2001-2014 SiTex Graphics, Inc.

The default mode is black for both s and t coordinates.

-size width height

Resize the output image to width x height.  When writing an AIR texture map, the output width and
height should be a power of 2.

-flipx

Flip the image horizontally.

-flipy

Flip the image vertically

-rot angle

Rotate the image in 2 dimensions.  Angle must be a multiple of 90 degrees.

-8

Output data as 8-bit unsigned integers

-16

Force output of data as 16-bit unsigned integers

-float

Output data as floating-point numbers.

-tilesize n

Use tiles of size n for mip-mapped images.  The default size is 32 for texture maps and 64 for
shadow maps.  The tile size must be a power of 2 between 8 and 128 inclusive.

-u

Forces the creation of an uncompressed texture file.

-d

Send output to AIR Show.  On Linux AIR Show must already be running.

-lzw

Enable LZW compression for TIFF images.

-inc

Convert the image incrementally, one row of pixels at a time.  This option only works with image
readers that support reading an image one row at a time, currently limited to TIFF, BMP, and PSD
formats.  This option can drastically reduce the amount of memory needed to convert large images.

-fromsrgb, -tosrgb

Convert the image from or to sRGB color space



Tools 414

© 2001-2014 SiTex Graphics, Inc.

-resize (up|down|round|none)

Controls how an image is resized when converted to an Air texture map.  The default resize mode
rounds each dimension to the nearest power of 2.  If the resize mode is set to "down", each
dimension is reduced to the next lower power of 2.  When resize mode is set to up, the next higher
power of 2 is used.  Here are the corresponding output values for a 640x480 input image:

round: 512x512
down: 512x256
up: 1024x512
none: 640x480

Sample Use:

mktex -smode periodic -tmode clamp grid.tif grid.tx

Creates a texture file that is periodic in the first texture coordinate and clamps the  second texture
coordinate.

24.7.2 Shadow Maps

Make an AIR shadow map from one or more depth maps with

mktex -shadow zfile1 (zfile2...) outfile

Up to 6 depth maps may be combined into a single shadow map.  All depth maps should have the
same dimensions.  Multiple maps are useful for adding shadows to a source such as a point light that
illuminates a wide range of directions.  When accessing a shadow map with multiple depth maps, the
renderer will use the first map whose viewing frustum contains the point being sampled.  Maps whose
regions adjoin should slightly overlap to prevent gaps.

Multiple depth maps can be used to make a cube-faced shadow map for a point light.

24.7.3 Latitude-Longitude Environment Maps

Create a lat-long environment map from an uncompressed TIFF file with

mktex -envlatl TIFFfile [envfile]

If no output file is given, the name of the output file is derived from the input filename by changing the
filename extension to .env

24.7.4 Cube-Face Environment Maps

Create a cube-face environment map from 6 image files with

mktex -fov angle -envcube px nx py ny pz nz envfile

Each image contains the environment viewed from a point in one of the 6 orthogonal directions.

The optional -fov argument gives the angle in degrees of the perspective projection used to generate
each face of the cube.  Using an angle slightly larger than 90 degrees can help avoid artifacts along
cube edges.  If the -fov option is not present, the default angle is 90 degrees.



AIR User Manual415

© 2001-2014 SiTex Graphics, Inc.

24.7.5 Mirror Balls and Angular Maps

Environment map images are often generated by photographing a reflective sphere.  Such a "mirror
ball" format image can be converted for rendering with

mktex -ball srcimage destimage

Another common format for probe images is the angular map, in which distance from the center is
linearly related to angle (unlike a mirror ball image).

To convert an angular map to a lat-long map for rendering with Air, use

mktex -angular srcimage destimage

For image-based lighting a small image is usually sufficient.  The output image size can be set using
the -size option.  E.g.,

mktex -angular -size 256 128 myprobe.tif myprobe.tx

mkex also supports 3D rotation for an angular or ball map, allowing you to orient the map properly for a
given scene:

-rotx angle
-roty angle
-rotz angle

These options rotate the map in 3D dimensions around the X, Y, and Z axes respectively.  The "up"
axis is Z by default.  For a modeling problem that uses Y as the up direction, rotate 90 degrees about
the X axis.  Rotation about the Z axis always rotates the scene about the vertical axis.

-blur amt

The blur option blurs the output image, which may reduce noise when a map is used for image-based
lighting.

24.7.6 Compositing

New in AIR 9, mktex allows images to be created using simple but powerful command line compositing
equations.  The source images may differ in size, channel depth, or data type.  mktex will automatically
perform any necessary conversions.

Compositing Syntax and Examples

Compositing mode is invoked with the -comp command line option followed by an equation which can
include source image file names, numeric constants, and operators.  For example, a simple weighted
sum of a diffuse and specular pass could be created with:

mktex -comp result.tif = diffuse.tif mul 0.9 + specular.tif mul 1.1

Multichannel constants can be created as a comma-separated list enclosed in braces:

mktex -comp greenish.png = {0.8.1,0.8} mul source.png

Equations can reference a subrange of channels in a multichannel image using brackets with a
channel range after the image name:

mktex -comp result.tif = m.tif[4-6] + 0.9 mul m.tif[7-9] + 1.1 *



Tools 416

© 2001-2014 SiTex Graphics, Inc.

m.tif[10-12]

Braces can also be used to add channels to an image.  E.g., to add an alpha channel to a composite of
two 3-channel images:

mktex -comp result.tif = {light0.tif + light1.tif, beauty.tif[3]}

or merge separate images into a single multichannel image:

mktex -comp multi.tif = {diffuse.tif,specular.tif,reflect.tif}

A numbered sequence of images may be processed using the -frames option to specify a range of
frames.  mktex recognizes the same frame number expansion syntax as AIR - #nf where n is the
minimum number of digits in the frame number, zero padded.  E.g., the following command

mktex -frames 9 11 result#4f.tif = diffuse#4f.tif + specular#4f.tif

would produce 3 images:  result0009.tif, result0010.tif, and result0011.tif.

Compositing operators

A + B, A add B addition

A - B, A sub B subtraction

A * B, A mul B multiplication

A / B, A div B division

A min B minimum of A and B

A max B maximum of A and B

A dot B dot product of A and B

byte A convert A to unsigned 8-bit data

word A convert A to unsigned 16-bit data

float A convert A to float data

abs A take absolute value of A

[min-max] extract channels from preceding
image

M ? A : B blend between B (M=0) and A
(M=1)

( ) group and order operations

{A,B} append channels in B to channels
in A

Note 1:  Linux shells may expand * to a wildcard; mul should be used for multiplication.
Note 2:  / used as a divide operator must be separated by white space



AIR User Manual417

© 2001-2014 SiTex Graphics, Inc.

24.7.7 Stitching Images

Version 12 of mktex introduces a new stitching mode for joining a grid of small images into a single
large image.  The command syntax is:

mktex -stitch nx ny basename00.tif outimage.tx

where nx and ny give the number of subimages horizontally and vertically.  All sub-images must have
the same width, height, number of channels, and data type.  Each sub-image should have a name like:

basenameXY.tif

where X (between 0 and nx-1) and Y (between 0 and ny-1) give the sub-image index.  Image 0,0 is the
top, left image.  Stitching uses the new incremental conversion mode for handling large images.  The
input file format must be compatible with that mode.

24.8 Texture Converter User Interface (mktexui)

mktexui provides a graphical user interface for creating AIR texture maps from standard texture files.
The single window contains the following controls:

Image Source

The source image file in any of the texture formats recognized by AIR.  The source can be a single
file, or a pattern for selecting several files.  E.g.,

c:\temp\*.tif

would select all .tif files in the c:\temp directory.

Map Type

This control specifies the type of map to be created or the source format in the case of environment
maps.

X Wrap Mode, Y Wrap Mode

For texture maps the wrap mode determines how texture queries outside the range 0..1 are handled.

black return color (0,0,0) for texture access outside the
range 0..1

clamp clamp the coordinate value to the range 0..1
periodic wrap the texture coordinate; e.g., use s=s-

floor(s)

Transformations

The following transformations can be applied to an image during the translation process:

Flip X

Flip the image horizontally

Flip Y

Flip the image vertically



Tools 418

© 2001-2014 SiTex Graphics, Inc.

Rotate

Rotate the image in increments of 90 degrees.

Rotate 3D

For angular maps only, rotates the coordinate system for the environment map lookup.

Output Data Type

Specifies the data type of the output image:  8-bit, 16-bit, or float.  By defaul the output image will
have the same data format as the source image.

Output Size

Specfies the size of the output image.

Output Directory

The directory in which to place the created file.

View Source

Press this button to view the source image in AIR Show.  On Linux AIR Show must already be
running for this command to work.

Preview

Use the Preview button to view the converted image in AIR Show, with any transformations applied.
On Linux AIR Show must already be running.

Make Maps

Press this button to create the texture map or maps.  Standard texture maps and environment maps
will have an extension of .tx.  Shadow maps will have an extension of .shd.

24.9 Vortex

Vortex is a distributed rendering manager for AIR.  Vortex allows multiple instances of AIR running on
different machines to all work on the same image.

Vortex has a couple basic requirements and restrictions

· All files used in a scene should reside on a networked drive visible to all worker machines.
· The scene file should have only one pass, i.e., one World block, which may produce multiple

output images.

Usage

Vortex is designed to be a transparent substitute for AIR:  you can use Vortex to render just as you do
AIR:

vortex myscene.rib

Vortex manages the rendering process by requesting pieces of the image from each worker task and
merging the output from all workers to produces the final image(s).



AIR User Manual419

© 2001-2014 SiTex Graphics, Inc.

Vortex requires one or more instances of AIR running as workers connect to the Vortex host.  Vortex
provides 3 mechanisms for launching worker tasks:

1. Automatic launch of workers on the local machine.
2. Broadcast message requesting workers from machines running VoluntAIR.
3. Execution of a user-defined command that, e.g., starts a batch job on a render farm or

communicates with a centralized render manager.

These mechanisms may be used in any combination that is convenient.

Local Workers

To start an instance of AIR as a worker for Vortex manually use:

air -vhost ip:port

where ip is the IP address of the machine running vortex.  The port is optional unless the -port option
was used with Vortex.

By default Vortex will launch a single instance of AIR on the local machine.  That behavior can be
overridden with the -local command line option:

vortex -local 2 myscene.rib

An argument of 0 will prevent any local workers from being started.  The default number of workers
can be set with a VORTEX_NLOCAL environment variable.

The exact command executed can be customized with a VORTEX_LOCALCMD environment variable.
The default command is

air -vhost %HOST%

Vortex replaces %HOST% in the command string with the IP address and port of the Vortex instance.

VoluntAIR (Windows only)

VoluntAIR is a small program that enables an idle machine to provide workers for Vortex instances on
demand.  To start VoluntAIR on a machine, simply enter voluntair at a command prompt.  VoluntAIR
waits for a message from a Vortex instance and starts an instance of AIR when it receives a request.
The exact command executed can be customized with a VOLUNTAIR_CMD environment variable.  The
default command is

air -vhost %HOST%

Batch Command

f a VORTEX_BATCH environment variable is defined, Vortex will execute the command given in the
environment variable as a separate process.  The command can be used to submit a batch job to a
render farm or to request workers from a central render manager.  Vortex performs the following
substitutions on the command string:

%HOST%       ip address and port number of vortex instance
%NWORKERS%   number of requested workers

Number of Workers

The maximum number of workers used by a particular Vortex instance can be set with the -w



Tools 420

© 2001-2014 SiTex Graphics, Inc.

command line option.  The default maximum is 5 workers.  Vortex will reject connection attempts by
additional workers once the maximum has been reached.

Command Line Options

-local n

Sets the number of local AIR instances to launch.

-novol

Don't broadcast a request for VoluntAIR workers.

-port n

Set the port number on which to accept connection requests from workers.

-w n

Sets the maximum number of workers to use for a job.

-bs width (height)

Sets the size of the buckets used for rendering.

-crop left right top bottom

Restricts rendering to a subrectangle.

-d

This option forces output to a window.  It overrides any Display call in the RIB stream.

-reflect

Shorthand for Attribute "visibility" "reflection" [1]

-res width height

Sets the resolution of the rendered image.  This option overrides any subsequent Format call.

-samples xsamples (ysamples)

Sets the number of samples per pixel.  This option overrides any subsequent PixelSamples call.

-shadows

      Shorthand for Attribute "visibility" "shadow" [1]

25 Plugins and Companions

Plugins compatible with Air are available for many major modeling and animation programs.  Other
programs provide builtin support for rendering with Air.



AIR User Manual421

© 2001-2014 SiTex Graphics, Inc.

Here is a partial list of compatible plugins for Air:

SketchAir (new!)

Our new plugin for SketchUp, currently in development.

Air Stream

Our plugin for Maya available as a separate download from the SiTex Graphics web site.

RhinoAir

Our own plugin for Rhino 4 and 5, available as a separate download from the SiTex Graphics web
site.

CineMan

A new plugin for Cinema4D

Companion Products

Houdini

www.sidefx.com

SideFx's advanced 3D products for visual effects offers good support for rendering with Air.  See the
Houdini section of this manual for more information.

Massive

www.massivesoftware.com

Massive is the crowd simulation program from Massive Software used to generate crowds for the
Lord of the Rings movies.

"Massive is the premier 3D animation system used for generating crowd-related visual effects and
character animation, based on artificial life technology."

The Massive section of this guide has an extensive list of tips and tools for rendering Massive
crowds with Air.

CityEngine

www.procedural.com

Procedural city construction from Procedural, Inc.

RealFlow Rendering Toolkit

www.realflow.com

Rendering toolkit for the RealFlow fluid and dynamics simulation software.

Temerity Pipeline

http://www.sitexgraphics.com/html/sketchair.html
http://www.sitexgraphics.com/html/air_stream.html
http://www.sitexgraphics.com/html/rhino.html
http://www.maxon.net/pages/products/new/r11/ar/cineman_e.html
http://www.sidefx.com
http://www.massivesoftware.com/
http://www.procedural.com/
http://www.realflow.com
http://www.temerity.us


Plugins and Companions 422

© 2001-2014 SiTex Graphics, Inc.

"Temerity Pipeline is the industry's first complete production control application designed for the film,
television and game industries. Pipeline increases productivity and studio profitability by providing
seamless control over distributed processing of jobs, revisions and storage management. Studio
pipelines are managed through one environment allowing artists to spend more being creative
instead of dealing with production issues.

Temerity believes that the development of in-house production solutions and pipeline methodologies
can be more costly, difficult to maintain and less efficient than an integrated solution like Pipeline.
The tight integration of Pipeline's asset management, revision control and distributed execution
queue provides both efficiency and new functionality which cannot be achieved through gluing ad
hoc combinations of existing production tools. Pipeline offers a solid yet highly flexible infrastructure
suitable for any studio size or type of production."

Temerity Pipeline has full support for Air, BakeAir and their associated texture and shader utilities.

DarkTree

DarkTree is a visual shader creation tool from Darkling Simulations:

"DarkTree 2.0 is an advanced procedural shader authoring tool.  Its visual flow-based editor lets you
interactively create  photo-realistic procedural materials, surface shaders, and animated effects.
DarkTree 2.0 includes 100 procedural components that can be combined to generate almost any
texture or surface effect you need."

An evaluation version of DarkTree is available from the Darkling Simulations web site.  See also the
section on using DarkTree shaders with AIR.

HDR Shop

"HDR Shop is an interactive graphical user interface image processing and manipulation system
designed to view and manipulate High-Dynamic Range images."

HDR Shop is available from Paul Debevec's web site.

Vtexture

Alex Segal's DSO shadeop for using vector file formats as textures.

26 Resources

The RenderMan® Interface

AIR is compatible with the RenderMan® standard for the description of 3D scenes.  To learn more
about RenderMan®, consult the resources below:

Online documentation

The RenderMan® Interface Specification 3.2

Books

The RenderMan Companion: A Programmer's Guide to Realistic Computer Graphics by Steve Upstill.

Old but still a good introduction to RenderMan®.

http://www.darksim.com/
http://www.darksim.com/
http://www.debevec.org/HDRShop/
http://www.debevec.org/HDRShop/
http://www.renderman.ru/vtexture/indexe.html


AIR User Manual423

© 2001-2014 SiTex Graphics, Inc.

Advanced RenderMan: Creating CGI for Motion Pictures  by Anthony A. Apodaca and Larry Gritz.

An essential reference for RenderMan®.  Contains some introductory material as background to the
advanced techniques discussed.  Also has a good section on digital cinematography.

Essential RenderMan Fast by Ian Stephenson

This book is specifically designed as an introductory text, covering the nuts and bolts of rendering
and writing shaders.  Highly recommended.

Newsgroup

comp.graphics.rendering.renderman

Newsgroup FAQ

comp.graphics.rendering.renderman.FAQ

Creating Computer Graphics Imagery

Digital Lighting & Rendering by Jeremy Birn

Good general discussion of techniques for composing, lighting, and shading 3D scenes.  Not
application-specific.

27 License Agreement

AIR - Advanced Image Rendering Software and the Visual Shading and Lighting Toolkit (SOFTWARE
PRODUCT) is owned by SiTex Graphics and is protected by United States copyright laws and
international treaty provisions.  Therefore, you must treat the SOFTWARE PRODUCT like any other
copyrighted material (e.g. book or musical recording).  You may make one copy of the SOFTWARE
PRODUCT for archival purposes.  You may not redistribute the SOFTWARE PRODUCT or any of its
accompanying materials.  You may not reverse engineer, decompile, or disassemble the SOFTWARE
PRODUCT.

SiTex Graphics grants you the non-exclusive right to use one copy of the SOFTWARE PRODUCT per
license as long as you comply with this agreement.  Each license of the SOFTWARE PRODUCT may
be used on only one computer at one time.

The SOFTWARE PRODUCT and accompanying materials are provided on an "as-is" basis.  SiTex
Graphics makes no warranty, either expressed or implied, including but not limited to warranties of
merchantability or fitness for a particular purpose, with regard to the SOFTWARE PRODUCT and the
accompanying materials.

In no event shall SiTex Graphics be liable for any damages whatsoever (including without limitation,
damages for loss of business profits, business interruption, loss of business information, or any other
pecuniary loss) arising out of the use of or inability to use the SOFTWARE PRODUCT.  Because some
states do not allow the exclusion or limitation of liability for consequential damages or incidental
damages, the above limitation may not apply to you.

This agreement is governed by the laws of the State of Texas, USA.

By installing the supplied SOFTWARE PRODUCT, you acknowledge that you have read, understood,
and agreed to these terms.



Copyrights, Trademarks, and Credits 424

© 2001-2014 SiTex Graphics, Inc.

28 Copyrights, Trademarks, and Credits

Copyrights and Trademarks

AIR and the Visual Shading and Lighting Tool Kit software and documentation are Copyright 2000-
2004 SiTex Graphics, Inc.  All rights reserved.

The RenderMan® Interface Procedures and RIB Protocol are Copyright 1988, 1989, Pixar.  All rights
reserved.  RenderMan® is a registered trademark of Pixar.

Rhinoceros (Rhino) is Copyright 1993-00 Robert T. McNeel & Associates.  All rights reserved.

OpenEXR software

Copyright (c) 2002, Industrial Light & Magic, a division of Lucas Digital Ltd. LLC All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

· Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

· Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

· Neither the name of Industrial Light & Magic nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR   ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;          LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

LIBTIFF

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its documentation for any
purpose is hereby granted without fee, provided that (i) the above copyright notices and this permission
notice appear in all copies of the software and related documentation, and (ii) the names of Sam
Leffler and Silicon Graphics may not be used in any advertising or publicity relating to the software
without the specific, prior written permission of Sam Leffler and Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL,



AIR User Manual425

© 2001-2014 SiTex Graphics, Inc.

INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT
ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

PTEX software

Copyright 2009 Disney Enterprises, Inc. All rights reserved

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.
    * The names "Disney", "Walt Disney Pictures", "Walt Disney Animation Studios" or the names of its
contributors may NOT be used to endorse or promote products derived from this software without
specific prior written permission from Walt Disney Pictures.

Disclaimer: THIS SOFTWARE IS PROVIDED BY WALT DISNEY PICTURES AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT AND TITLE ARE DISCLAIMED. IN NO EVENT SHALL WALT DISNEY
PICTURES, THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND BASED ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Credits

The JPEG display driver is based in part on the work of the Independent JPEG Group.

The PNG display driver uses libpng.

29 History

Change log.

AIR 13 (November 2013)

AIR 12 (August 2012)
AIR 11 (July 2011)

AIR 10  (July 2010)
AIR 9  (September 2009)
AIR 8  (December 2008)
AIR 7  (March 2008)

AIR 6  (July 2007)



History 426

© 2001-2014 SiTex Graphics, Inc.

AIR 5  (December 2006)
AIR 4.1  (July 2006)
AIR 4  (November 2005)

AIR 3.1  (June 2005)
AIR 3  (February 2005)
AIR 2.9  (September 2004)
AIR 2.8  (June 2004)

29.1 AIR 13.0

· New SketchAir plug-in for SketchUp, available as a separate download from the SiTex Graphics web
site

· Air Stream for Maya 2.0, available as a separate download from the SiTex Graphics web site

· New Retexture tool for interactive material tweaks.  (Windows only) See the separate Retexture
User Manual for more information.

· Physically Plausible Shading
· New importance-based method for sampling reflections based on a specular BRDF allow

reflections and specular highlights to be treated in a consistent manner, enabling a new set of
physically plausible shaders.

· New physically plausible shaders:  SimpleMetal, SimplePlastic, VPhysicalMetal, VPhysicalPlastic

· Color
· A new Color section of this document provides a simple unified discussion of the proper handling

of color input and output values when rendering with Air.
· Other topics dealing with color have been grouped under the new Color section.
· A color can be specified as a solar spectrum
· New option to have Air automatically convert raw texture images from sRGB color space to linear

rgb:

ColorSpace "rawtexture" "sRGB"

· The option to apply the dominant illuminant and chromatic adaptation to rgb colors has a new
syntax.  Instead of the old:

Option "render" "string currentcolorspace" "litRGB"

use

ColorSpace "current" "litRGB"

· Indirect Lighting
· New radiosity cache can greatly accelerate indirect lighting
· New option to force Air to wait until an indirect or occlusion prepass has finished rendering before

rendering the final pass:

Option "render" "syncprepass" [1]

This option provides a solution in cases where a bucket has not finished computing in the prepass



AIR User Manual427

© 2001-2014 SiTex Graphics, Inc.

when it is rendered in the final pass.  Enabling this option will in general increase rendering time,
since it forces all threads to wait until the last thread finishes the prepass.  The option is enabled
by default.

· Occlusion
· New optimizations improve performance when using a cache for complex scenes with many

threads

· Output
· Most Air surface shaders have a new __diffuse_shadow output value that contains a shadow

value based on a linear relationship between the shadowed and unshadowed diffuse values.  This
relationship is preserved through Air's filtering and compositing, unlike the old __shadow output
variable which could exhibit artifacts along object edges and in regions of partial transparency.
__diffuse_shadow is now the recommended shadow value to use in multipass rendering.

· When the prefilterclamptoalpha option is enabled, output from any environment or imager shader
is also clamped

· Updated the Photoshop display driver to support the new __diffuse_shadow layer (with a subtract
blend mode)

· Shaders
· New spherelight light shader allows a point light to be used to mimic the effect of a spherical area

light.
· New spot_projector and distant_projector light shaders project a texture map like slide projector.
· New FakeCarpet surface shader makes a rectangle look like a fuzzy carpet
· New instCarpet instancer shader for growing carpet fibers on a rectangular patch
· New VShadeCarpet surface shader to use with the above instCarpet shader
· New VHexTile surface shader for hexagonal ceramic tiles
· New UseBackground surface shader for computing reflections and shadows for compositing over

a background image
· New maxemission parameter for all light shaders that vary emitted intensity based on distance

from the light source. Useful for limiting the maximum light intensity on near surfaces for lights that
use a linear or quadric falloff of light intensity with distance.

· Updated VFur and VHair shaders:  new rootcolor and tipcolor parameters to work with Shave
export from Maya.  New ColorBias parameter for tweaking the interpolation between root and tip
colors.  The shaders now pass a valid normal to illuminance() to work better with occlusion and
indirect lighting.

· Updated envPhysicalSky shader to include parameters to tune intensity based on ray type and
visibility toggles for indirect and reflection rays

· Updated portallight shader to match the appearance of a window with indirect lighting
· Updated VBlinn and VPhong shaders to include __environment AOV and to support tracing light

channels through reflections
· Updated Emitter surface shader with texture option and separate intensity controls for different ray

types.
· Disabled the builtin background imager so the shader file is always run instead.  This change

solves an issue where the standard "background" color was not applied to rgb or rgba outputs
contained in a multichannel file.

· Atmosphere, Interior, and Exterior shaders may now use shader networks

· Curves
· New attributes to allow curves to be tapered at either or both ends

· Miscellaneous:
· Settting the number of rendering threads to 0 can now be used to reset the thread count to the

number of detected processor cores (the default)
· The shading language texture() function can be used to generate an antialiased 2D noise



History 428

© 2001-2014 SiTex Graphics, Inc.

pattern by supplying the special texture name "noise"
· Volume rendering:  ray marching now applies the view density and shadow density attributes
· The -q16 and -qfloat command line options now apply the appropriate quantization when the -d or

-file options are used.  A new -q8 option forces quantization to 8-bit.
·  Air now defines a user option of type float with the current version number in the format

   major.minor

   This user option can be referenced in a conditional rib statement to optionally include or exclude
features based a particular version of the renderer

· TweakAir
· Support for opacity values attached to a primitive variable list
· Fix for uniform primitive variable indexing when redrawing the camera view
· Fix for varying/facevarying prim var indexing when re-tracing the camera view

· Shading Compiler
· The noise() function may now specify the type of noise to use with an initial string.  The options

are the same as those for

Option "noise" "string algorithm" ""

· The error message for undefined var declared with "extern" now includes the variable name
· Boolean variables can now be used as the target in option() or attribute()

· Air Show 8:
· Support for the new __diffuse_shadow output variable in composite mode
· New simple Print command in the File menu (Windows only)
· Status bar text is no longer sometimes reversed under Windows 7

· Texture Conversion tools (mktex and mktexui)
· New options to convert to and from sRGB color space
· Unrecognized options are reported but no longer cause the conversion to fail
· New check box in mktexui to convert all files in a directory

· Massive
· New user note on adding a background image

· Bug fixes:
· Texture lookups when shading indirect rays
· Fix in ray traced hider jitter computation
· Tweak for trace quad intersection under 64-bit (explicitly use double precision for sqrt)
· Fix for texture coordinate computation when shading triangular micropolygons
· Fix for fragment shading in 64-bit Air for Windows (workaround compiler bug)
· Fix for unfiltered texture read of images with fewer than 3 or more than 4 channels
· Tweak for shading optimizer to provide derivs inside a loop with multiple iterations
· Shader files that have been truncated are now reported as corrupt
· Fix for rendering curves with "uniform width" as tubes or ribbons
· Fix for memory use reporting to prevent erroneous extreme values due to thread interference
· When Air is unable to save an occlusion file, the error message includes the file name



AIR User Manual429

© 2001-2014 SiTex Graphics, Inc.

29.2 AIR 12.0

· First official release of the Air Stream plug-in for Maya (available as a free download from the SiTex
Graphics web site).

· 64-bit build for Windows:  the Windows distribution of Air now includes a 64-bit version of Air named
air64.exe

· New ray tracing primary hider

· Occlusion
· New "axis" parameter for the occlusion() function takes a vector value.  If non-zero, the vector

defines the "up" direction for hemisphere of incoming light.  Any occlusion rays pointing down with
respect to the up direction will be considered occluded by a virtual ground plane, and not traced at
all.

· Occlusion optimize normal option is now disabled by default when an occlusion cache is not used,
which produces more detail for bump-mapped surfaces

· Important fix for occlusion to prevent recursive calls for surfaces with shader-computed
transmission.

· New envlight parameter samplelikediffuse to enable sampling the environment using a cosine
distribution.  When the envlight envname parameter is set to "environment", the environment will
be sampled using a lambert brdf, producing a result that is much closer to the result from indirect
lighting and the result from using the envlight's "sampleenvironment" switch.

· Added a shadowgroups parameter to the environment shader to restrict occlusion testing to the
members of the specified groups.

· Indirect lighting
· New option to automatically build an in-memory cache for environment queries
   from indirect rays:

Option "indirect" "environmentcache" [1]

Using the cache produces much smoother results and is usually at least 2X faster for environment
queries than rendering without.  Highly recommended.

· Indirect diffuse environment sampling is now much cleaner
· Indirect diffuse results are less noisy at higher bounce levels

· Ptex (per-face texture mapping)
· New attribute to set the name of the Ptex texture coordinates generated by Air:

Attribute "render" "string ptexcoordinates" "st"

· Shaders
· New cardlight area light shader emulates the effect of using a constant-shaded card to add light

with indirect diffuse illumination.
· New OceanWaves displacement shader
· New Emitter surface shader can be used to create the effect of an area light with indirect diffuse

illumination
· New surface shader ShowPosition
· New OceanSurface and OceanSurfaceWithFoam shaders for oceans
· New BakedSurface surface shader for rendering with baked illumination maps
· New genQueryBakedMap generic shader for querying baked maps



History 430

© 2001-2014 SiTex Graphics, Inc.

· New genUserAttributes generic shader for querying color or float user attributes
· New genUV generic shader emits standard u, v coordinates (for use in Maya)
· New genTextureUV generic shader queries a texture map using u,v coordinates
· New instMultipleArchives instancer shader for instancing multiple archives
· The portallight shader has been updated to sample the global environment by default
· All indirect and envlight shaders have been updated to include indirect in the __category

parameter.
· Updated VInstanceArchive shader with parameters for rotation and for converting color or float

prim vars to user attributes (which can be queried by a shader attached to an instanced object).  A
new ArchiveIsSimple parameter can be used to disable use of a temporary inline archive for
instancing (which doesn't work with archives created by RhinoAir that contain Rhino blocks).

· The VCarPaint shader has new controls for metallic flakes.
· The sunlight and envPhysicalSky shaders have new parameters to explicitly set the sun position.
· The VBackdrop imager shader now supports an image sequence.
· The VArrayOnSurface instancer shader has new parameters to vary scale and rotation for each

item.

· Shading Language
· New method of transferring primitive variable data to shaders allows prim var data to be used with

layered and networked shaders.  The new method is also slightly faster.
· Area lights can now query the total surface area of the area light geo with

float surfarea;
attribute("light:area",surfarea);

· New function str_replace_last_number can be used to replace the last number in a string with a
new value

· The gather() function can now be used to query point clouds

· Instancers and instancing
· New data structure greatly accelerates sampling a primitive using standard texture coordinates
· Instancers can now be evaluated by multiple threads simultaneously
· Instancers can reference the object space coordinate system of the base object
· Instancers now handle scale for width and constantwidth prim var data
· Instancers can reference user attributes attached to the base object
· Objects created by an instancer now inherit any user attributes attached to the instancer's base

object
· Modified instancer bound computation to look for particle/curve width data
· Multiple instancer shaders may now be assigned to an object

· Command line switches
· The -frames command line option no longer uses the frame range to filter rib based on the frame

number passed to FrameBegin.  This change allows a numbered sequence of files to be rendered
regardless of the frame numbers set in the rib.  In particular, this feature now works with the
shadow map ribs generated by Air Stream.

· The -surf command line option has been extended to accept a comma-separated list of parameter
values for the override surface shader.  E.g.,

air -surf massive_occlusionpass,samples=1 myscene.rib

Float and string parameter types are supported.

· Shadows
· Traced shadows with transmissionhitmode "primitive" now work for volume primitives with point-

based data and no per-vertex opacity



AIR User Manual431

© 2001-2014 SiTex Graphics, Inc.

· Traced shadows with transmissionhitmode "primitive" now use prim var opacity (Os) data when
available

· Smooth interpolation for deep shadow maps can now be specified when the shadow map is
created by including a "float lerp" parameter with value 1 in a Display call using the shadow
display driver.

· Points
· The patch point type accepts a "patchangle" parameter to set a rotation angle (in degrees) for the

patch rectangle (for Maya sprite translation).

· Curves
· Polyline and ribbon curves now compute a primitive-based dPdv value (to match TweakAir)
· Tube curves now compute u,v when required
· Curve primitives used as area lights may now use width or constantwidth to specify a radius value

for treating the curve as a tube

· Outlines
· Vector outline export in DXF and AI file formats

· Textures
· Faster texture lookups when all texture derivatives are close to 0.
· The Windows TIFF imager reader has been updated to libtiff 4.0.1 which includes support for

BIGTIFF files (which can be larger than 4GB).

· TweakAir
· Networked shaders can be tweaked by including a "layername" parameter in the IrTweak*

command specifying which shader to tweak
· Standard texture coordinates (s,t) are initialized for imager shaders.
· The displayed image may be in 16-bit or float precision.
· When the camera changes, TweakAir now casts rays of type "camera" to compute new visible

surfaces, allowing objects that are invisible to reflection rays to appear in the IPR view.
· Tweaking an environment shader now forces re-evaluation of any light shaders that sample the

environment.
· A new per-pixel occlusion cache speeds up re-rendering with tweaking the envlight shader.
· Now displays a rough view as the initial deep buffer is filled.
· dPdv is generated when needed for polyline and ribbon curves
· u and v values are now cached when required.
· Fix to correctly save user prim vars when re-tracing the camera view.
· TweakAir detects if a tweaked camera position is really different from the current camera

transform before re-tracing the view port (fixes an issue where Rhino now sends a camera change
event even when the camera has not moved)

· Air Show
· A new log window displays any error messages generated by Air during a rendering
· Image data saved to OpenEXR files is automatically converted to float precision if necessary.
· Histogram now ignores empty pixels in an rgba image

· mktex (texture conversion tool)
· Ptex is supported as an output format for regular textures and all environment texture modes.
· New incremental conversion mode (-inc) converts an image one row at a time to reduce memory

used when converting large images.
· New stitching option to create a single large image from a grid of sub-images.
· New -lzw option to enable LZW compression for TIFF images



History 432

© 2001-2014 SiTex Graphics, Inc.

· Miscellaneous
· Increased max threads allowed to 64
· Under Windows the default shader search path now includes $HOMEPATH/SiTex/shaders

· Deprecated features
· 32-bit Linux version of Air
· The parallel shading attribute is no longer supported.

· Fixes:
· Shading compiler fix to handle #undef preprocessor directive
· Bug in ptex coordinate generation for polygon meshes that are not all triangles or all quads

(mangled normals)
· Sub-pixel edge mask handling of exactly horizontal edge
· Bug that prevented light output variables from being correctly initialized when queried from a

networked surface shader
· Modified handling of traced reflections with only 1 sample and some blur to produce smoother

(non-noisy) results for first reflections
· Occlusion and indirect prepasses now work with fragment shading
· Display driver open and close calls are now single-threaded (to work properly with libpng and

libjpeg)
· Fix for subtle bug in surface shader handling when rendering a shadow map: surface shader is no

longer optimized away when creating an inline archive with transmissionhitmode other than shader
· Fix for bug in prim var handling in ray tracer for constant and uniform data
· Fixed bug in instancer handling of normals
· Fixed bug in display subset mask computation for multilayer images with elements of arrays
· Tube curve generation when both s,t and u,v prim vars requested.
· Fix for shading language spline("b-spline",...) function

29.3 AIR 11.0

· Layered Shaders and Shader Networks

· New generic shader type

· Environment shaders for shading rays that miss all objects in the scene

· Physical sun and sky shaders

· Per-Face Texture Mapping:  support for the open-source PTEX library

· Deep image hider

· Ray Tracing
· New option to optimize memory for ray-traced objects

· Indirect diffuse lighting
· Much more efficient handling of indirectdiffuse() evaluation with no caching in reflections

(the number of indirect samples is now reduced based on the number of reflection samples)
· indirectdiffuse() accepts "maxerror","maxhitdist","adaptive", and "maxpixeldist" parameters

· New massive_indirect light shader
· Indirect shading modes constant and diffuse now use prim var Cs data (of any class) if it is

present.  This allows a mesh with diffuse illumination baked as Cs to be used for fast indirect



AIR User Manual433

© 2001-2014 SiTex Graphics, Inc.

illumination with the constant indirect shade mode.

· Subsurface Scattering
· New option to automatically generate point set handles

· Shading
· Micropolygon shading handles uniform and constant primitive data
· Micropolygon shading texture() evaluation is now smoother and more consistent

· Mesh displacement now works on meshes without vertex normals

· Lighting
· Added adaptivesampling and rotation parameters to massive_envlight

· Primitive variable data can now "write" to light shader parameters.  The target light shader
parameter must be class "varying", and it must not be an output variable.

· Spectral profiles for light sources may now be specified using a color temperature for the spectral
file name value.  E.g.,

LightSource "distantlight" 1 "string lightcolor_spd" "2400" # sunset

· Occlusion
· New option to automatically sample the environment for unoccluded rays
· Modified the error calculation to work better with small max hit distances

· Textures
· New algorithm greatly improves the efficiency of the texture cache in some conditions

· Geometric Representation
· New attribute to control tessellation based on maximum edge length
· Changed tessellation of PointsPolygons primitives with more than 4 sides (for compatibility with

PTEX)

· Shading Language Extensions
· New boolean and integer variable types
· Additional rayinfo() queries
· New mode added for blinn() rolloff:  if rolloff<0, it's treated as the index of refraction of the

material (for compatibility with Softimage)
· New built-in cooktorrance() BRDF
· New dictionary() DSO shadeop

· Imager shaders
· Imager shaders may now have arbitrary output variables.  Each imager AOV that is being saved

will be initialized to the current pixel value for that AOV (the filtered result of the normal rendering
process).

· The standard Air imager shaders now provide a __background output variable with the imager
shader contribution to the final image

· Imager shaders now show up in images with multiple output channels
· Imager shaders may be defined in inline archives
· Imager shaders can query light sources with illuminance().  The imager shader is

"illuminated" by all lights.
· Imager shaders initialize (s,t) coordinates so the unit square covers the output image
· New LensFlareImager shader

· Output
· A Display declaration may now specify a different subset (group) for each output variable by



History 434

© 2001-2014 SiTex Graphics, Inc.

including a list of groups separated by commas in the optional "subset" parameter (instead of a
single group)

· New display channel __CPUtime gives the time (in minutes) to render each bucket

· User-defined attributes can be saved to output images:

Declare "objectid" "varying float"
Display "myuserdata.tif" "file" "user:objectid"

· An object's toon id can be included in an output image with:

Display "tooninfo.tif" "file" "toon:id"

· Geometry Export
· Export to PLY format now includes vertex color values when available
· Geometry export now issues an INFO message for each file created

· Level of Detail
· Improved automatic LOD for polygon meshes:  custom user data is now handled properly, and

edges and overall shape are better preserved

· Procedurals
· A RunProgram procedural declaration may omit the bounding box, in which case the procedural is

evaluated immediately.
· The option to set the number of RunProgram threads has been converted to an attribute

· RIB processing
· Air, BakeAir, and TweakAir now define a user option with the renderer name
· New directory mapping capability for translating path names depending on the rendering

machine's environment
· Handles for ObjectBegin and ObjectInstance can be strings instead of numbers
· RIB filters for Procedural now trap DelayedReadArchive procedurals
· Added limited support for ScopedCoordinateSystem (converted to CoordinateSystem)

· Archives can be found in the resource search path
· Reorganized the processing of the RIB Option call

· Shaders
· Fix for VPlastic to avoid tracing reflections twice
· Updated the bumpmap_polys displacement shader (used by Massive) to scale the bump

amplitude so it is relative to a local coordinate system (so scaling the agents also affects the bump
amplitude)

· Updated MassiveAgents instancer shader

· Messages
· Missing shaders are only reported once
· Missing textures are reported once (instead of once per thread)
· Error message for a missing texture reports the shader containing the texture call
· Errors in the RIB commands issued by an instancer shader now reference the instancer shader

name

· The old cilver license system has been de-supported

· Linux:  a single set of multithreaded binaries is now distributed for air and bakeair.  Separate airmt,
airst, and bakeairmt binaries are no longer included.

· Air Demo:  the number of rendering threads is no longer restricted to 2



AIR User Manual435

© 2001-2014 SiTex Graphics, Inc.

· Shading compiler (shaded):
· New -line command line option will print the line of code where an error occurs
· Support for prman-style struct field reference (eg, a->x instead of a.x)

· Fix for dot product and color values
· Missing quote error message reports the line with the unmatched quote
· Fix for handling of undeclared identifier in setxcomp() etc.

· The option to compile a shader to a DLL or shared object has been de-supported
· Support for longer parameter names (up to 63 characters)
· Fix for ctransform() code generation

· BakeAir
· New mode for baking meshes (instead of texture maps)

· TweakAir
· IrNewEnvironment and IrTweakEnvironment commands for updating environment

shaders

· Air Show 6
· New tone mapping display option
· Fix for gain control applied to 16-bit image with sRGB
· sRGB display mode is now enabled by default

· Vshade 4.0:  see the separate Vshade user manual for what's new

· Vortex
· New mode for distributed rendering of a sequence uses the same syntax as Air's sequence

rendering:

vortex -frames start end myscene#4f.rib

Each frame is assigned to one worker.  No output redirection is performed.

· Number of local workers now defaults to 0

· Bug fixes:
· Many fixes specific to the 64-bit linux build of Air
· Several fixes for vector-based edge detection and vector outline export
· Fix for a bug that could cause a crash with multiple threads in some rare conditions (specifically

when the bounding box of a primitive is much larger than the contained mesh or objects)
· Fix for xyY -> rgb color conversion with ctransform()
· Fix for environment() read of texture with fewer than 4 channels

· Increased buffer limits and added error checks for large numbers of output channels
· Shader interpreter modified to clamp the third argument of float mix(a,b,c) to 0..1
· Fix for map handling when map used as environment and texture
· Fix for rgbaz output

· Fix for stereo rendering with indirect or occlusion prepass
· Fix to prevent matrix lock corruption
· Fix to avoid using multiple instances of a DSO shadeop
· Fix for runtime shading optimizer
· Fixed voronoi("grid2d") to initialize the z-component of the cell centers

· Updated OpenEXR driver for Windows fixes a bug with pixel aspect ratio



History 436

© 2001-2014 SiTex Graphics, Inc.

29.4 AIR 10.0

· 64-bit Air binary for Linux

· Support for new unlimited threading licensing option:  new Air licenses allow an unlimited number of
rendering threads on a single machine.  Users with older 4-core licenses may upgrade their licenses
to unlimited threading for a fee.

· Stereo and Multicamera Rendering

· Ambient Occlusion
· New point-based ambient occlusion method
· Additional optimization accelerates rendering when the max hit distance is small relative to the

overall scene size (think local occlusion in a Massive crowd)

· Spectral color definition using spectral power distribution (SPD) files

· Spectral Prefiltering and Chromatic Adaptation

· Photometric lights and IES light profiles
· New image reader for IES light profile files which converts IES data to a lat-long environment map
· New photometric_pointlight shader for use with IES profiles

· Shading Language:
· User structures
· Support for option("searchpath:texture",path) and
option("searchpath:resource",path)

· meshinfo() vertex sampling now returns a value for facevarying data (it just picks one face's
value for the query vertex)

· New sRGB and litRGB color spaces
· Shaders can query the toon id attribute with attribute("toon:id",id)
· Deprecated irradiancecache() function

· Multithreading
· The default number of rendering threads is now equal to the number of detected processing cores
· Air no longer limits the number of rendering threads to the number of detected cores

· Procedural primitives
· Air can now execute multiple instances of a RunProgram procedural primitive to accelerate

multithreaded rendering.  Massive users in particular can use this option to improve rendering
performance.

· Linux builds of Air now detect Python and Perl scripts and automatically invoke the corresponding
helper application

· Texture maps:
· Unconverted textures are now loaded once and shared by all threads (instead of being loaded

separately by each thread).  Converting all textures to Air's texture format is still recommended for
optimal rendering.

· Subsurface scattering (SSS):
· Subsurface cache generation is now multithreaded, which can greatly accelerate SSS rendering.

Multithreading for cache generation is enabled by default.  It can be disabled with:

Option "render" "integer sssmultithread" [0]



AIR User Manual437

© 2001-2014 SiTex Graphics, Inc.

· The subsurfacescatter() function now handles varying parameter values properly.  However
using a varying mean diffuse path, reflectance, or ior will be much slower.  When using  varying
parameters, the max sample distance should be explicitly set to produce consistent results.  Use
as large a max sample distance as feasible to save render time.

· SSS memory usage has been reduced by 20%

· Polygon meshes
· Much more efficient rendering of quad meshes with mesh displacement
· Mesh displacement on polygon meshes now applies the same normal correction code as the

default displacement method
· The split mesh attribute now works with polygon meshes.  There is a new option for the max

number of faces in each sub mesh:

Option "limits" "integer splitpolyfaces" [25]

· Subdivision meshes:
· Simplification of facevarying data on subdivs is now supported when the split mesh attribute is

enabled.  Enable simplification with

Attribute "render" "integer simplifyfacedata" [1]

This optimization can save significant memory on objects with facevarying texture coordinates.

· Micropolygon shade mode:
· Support for multisegment motion blur
· Fix for polys without vertex normals
· Fix for dof or motion blur with clipped objects

· Motion blur
· new attribute to enable/disable adaptive motion blur on a per-primitive basis:

Attribute "render" "integer adaptivemotionblur" [1]

· Instancer shaders:  objects with vertex motion blur can be sampled at a given time with
meshinfo("sample:time"...)

· Geometry export:  meshes can now be exported in STL format

· New image readers for Softimage PIC, Windows Bitmap, and IES files

· New display driver:  Softimage PIC

· Outlines
· New option to export outlines in SVG vector format
· New attribute to include border edges in vector-based outline rendering
· New attribute to include edges in vector-based outlines based on angle between faces

· Shaders:
· New surface shaders:  ClownPass, Glow, VGradient
· New light shader photometric_pointlight
· New displacement shader VThreads
· New imager shader sRGB
· Updated VInstanceArchive instancer shader to use a temporary inline archive for instances, for

much more efficient rendering of large point clouds
· Most surface shaders with a color map parameter now convert the map color to "current" color



History 438

© 2001-2014 SiTex Graphics, Inc.

space to work with spectral pre-filtering and chromatic adaptation

· Statistics:
· Statistics now reports total memory used by unconverted textures
· New option to report statistics on SSS cache reads:

Option "runtime" "integer sssinfo" [1]

· Stats include total memory used by all subsurface caches
· Stats include memory used for occlusion and irradiance caches

· 3D Point clouds:
· Point clouds with N values that are all 0 no longer save N to point cloud files
· Support for reading Maya PDC files
· Fixed bug in brick map loader that prevented Air from finding already loaded maps
· Fixed texture3d() filtering of general point clouds (not applicable to Air Point Maps or Air Brick

Maps)

· DSO shade ops:
· Shade ops that return a string type are now supported
· Fix to generate standard texture coordinates when only referenced by a shade op
· Shade op calls now make string parameters available at auxilliary shading locations

· Reprise License Manager (RLM) version 8.  See the separate RLM End User Manual in the doc
directory of the Air installation for information on new and improved features.

· Command line switches:
· Added -rows and -columns as shorthand for the corresponding bucket orders
· Added switch for custom float or string options:  -opt name token value

· Updated the list of switches in this manual

· RIB
· New Echo RIB command prints a message to stdout
· New Camera RIB command for defining additional cameras for stereo and multicamera rendering
· MakeTexture, MakeShadow, and MakeCubeFaceEnvironment now issue INFO messages

with the name of the created map

· BakeAir:
· Support for baking multiple outputs to a single map
· Individual elements of array output variables can be saved
· Map name display reports 16-bit and float precision
· Fixed printing of display modes for rendered maps

· Air Show 5.0:
· Stereo view mode
· Interactive gain control
· New option to disable detection of shadow maps, which allows single channel floating-point

images to be displayed as normal images
· Histogram and min/max computed only for valid region of a cropped image
· Fixes for 3dl LUT loader

· Air Control
· Bug fix for incorrect detection of task completion, resulting in "orphaned" air processes in the task

manager



AIR User Manual439

© 2001-2014 SiTex Graphics, Inc.

· mktex Texture Conversion Tool:
· Added byte, word, float data conversion and abs composite ops

· airpt (Air Point Tool):
· New -range option shows the min and max value of each stored channel

· Support for reading Maya PDC files

· makelif
· New option to create SPDL files for Softimage

· Bug fixes:
· Important fix for motion blur combined with depth of field (bounding box for a facet)
· Problem with SSS cache evaluation when triggered from a reflection ray
· Increased thread stack size for Linux air to prevent overflow
· Polygon auto LOD properly handles the case where an entire primitive is removed
· Initialize description string to null in image reader
· Inline archives fixed to prevent prim lock corruption
· String-to-real conversion now properly handles excess zeroes after the decimal point
· Real-to-string conversion handles small numbers better
· Adjusted minimum flatness to allow lower flatness values that may be appropriate when flatness

space is not raster space
· Network cache copy for air on Linux
· environment() "fill"

· Custom clipping planes
· Fix for Display mode to allow inline declaration of output arrays. E.g.,

Display "channel1.tif" "file" "varying color[10] __lights[1]"

should work now.

29.5 AIR 9.0

· New common product licensing:  TweakAIR and BakeAIR can now use an AIR license.  A separate
TweakAIR or BakeAIR license is no longer required.

· New light shaders for baking shadows and illumination to 3D texture files

· Important fixes for deep/fragment shadow maps
· Much better behavior on scenes with high depth complexity
· Bug fix for the default shadow mode to correct a case where a nearly transparent fragment was

recorded as fully opaque

· Light channel tracing
· AIR surface shaders with reflections now allow light channels to include the effects of reflection

and refraction.  Light channel tracking through reflections is enabled with the following user option:

Option "user" "float reflectlights" [1]

· Light channels can be tracked throught indirect diffuse bounces (GI) with the new indirectchannels
light shader.  With this new shader, each light channel includes not only direct lighting but indirect
illumination due to the corresponding light source.

· Indirect diffuse (GI)



History 440

© 2001-2014 SiTex Graphics, Inc.

· Much faster rendering with bg environment map
· Much more efficient rendering of multiple bounces without a cache
· Fix for overblown results with non-normalized normals
· new option to enable light channel recording during an indirect prepass:

Option "indirect" "string prepasschannels" "__lights"

· Shading language:
· environment() and trace() calls provide a "background" output value of type color that

stores the contribution of the bg environment map or color
· environment() and trace() can return arbitrary output variables from ray-traced primitives in

a manner similar to the gather() construct.
· texture3d() accepts a "fill" argument specifying the default value for channels if no points are

in range or the channel is missing.
· bake3d() accepts an "append" parameter with a float value.  If the append value is 1, points are

added to an existing file.
· Shaders may query the current frame number with option("FrameNumber",frame)

· Light shaders can access standard texture coordinates at the current shading location using the
new global variables ss and ts.

· Improved environment maps:
· The shading language environment() call now respects the samples parameter allowing users

to fine tune the speed and quality of environment map queries
· New options to set the number of environment samples for the indirect and reflected background

environment maps:

Option "indirect" "integer envsamples" [4]
Option "reflection" "integer envsamples" [8]

· New micropolygon shading mode:

Attribute "shade" "integer mode" [1]

· New attribute to apply the flatness tessellation criterion as an absolute tolerance in object space

Attribute "render" "string flatnessspace" "object"

· Geometry export in PLY format

· Added Perspective RIB command

· Increased max rendering threads from 8 to 16.

· RIB filter additions:  ScreenWindow, Projection

· Area lights:
· Fix for area light normals
· Better handling of geometry with facevarying data

· Shaders:
· New surface shaders:  BakeTangentNormalMap, CausticPass, IndirectPass, MotionPass,

VAnimatedMap, VFabric
· New light shader:  portallight
· New MassiveAgents instancer shader
· Most surface shaders with ray-traced reflections now have a __environment output variable



AIR User Manual441

© 2001-2014 SiTex Graphics, Inc.

holding the contribution of the background environment map for reflection rays
· All displacement shaders now provide __bump and __undisplaced_N output variables

· Updated shadowpass shader provides per-channel shadow values

· TweakAIR:
· Camera view can now be dynamically changed with new IrTweakCamera command

· Faster IPR display refresh
· New IrTweakCoordinateSystem command for updating coordinate spaces
· New IrWriteImage command writes the image buffer to a file

· TweakAIR can now be run in "batch" mode with no default display driver and commands piped
from a text file

· Faster storage to deep framebuffer
· Support for standard Cs color data attached to a primitive
· Documentation moved out of the Tools chapter to its own topic in the user manual
· TweakAIR API is now included with the AIR distribution
· Documentation for the TweakAIR API

· BakeAIR
· Multithreading support
· Updated legacy code to allow baking larger maps - up to 8K x 8K at PixelSamples 1 1.
· New option to have border filling wrap around in texture space:

Option "bake" "integer borderwrap" [1]

This option may be useful when baking Rhino polymeshes

· AIR Show 4:
· Simple render commands added to Tools menu
· 3D LUT support
· Drag-and-drop support from Windows Explorer (images and rib files)
· Histogram displays min and max values
· Image border color is now dark grey instead of black
· AIR Show now attempts to organize a multichannel file loaded from disk into layers assuming 3

channels per layer with rgb or rgba as first layer

· AIR Space
· Instancer shader support
· support for IPR view updates
· faster IPR display refresh
· new option to import some RIB options
· support for dropped files (.apj, .rib, .obj)
· the Bake channels parameter now accepts a comma-separated list of channels for baking multiple

maps.  Each channel is baked to a separate map.  Non-standard channel names should include
inline type declarations.

· AIR Control:
· accepts command line file name as default scene
· new control for command line options passed to the renderer
· drag-and-drop support from Windows Explorer

· Vortex
· Allows more than 16 workers
· Looks for max number of workers in a VORTEX_MAXWORKERS environment variable



History 442

© 2001-2014 SiTex Graphics, Inc.

· Vshade 3:
· TweakAIR support
· new improved parameter list
· preview image size can be set to viewport
· drag-and-drop support from Windows Explorer

· mktex texture converter:
· new compositing operations
· new -info switch to display basic image information
· -ch option supports a range of channels to extract
· improved cube-face environment map conversion:  supersampling, output to any supported

display driver, support for other output options, new -fov option
· new buffering when writing an AIR texture file greatly improves performance when writing to a

network drive from Windows

· Bug fixes
· AIR quits if a vortex connection is refused (instead of waiting on stdin)
· Fix for sqrt() range check

· Fix to allow instancers in inline archives
· AIR now clamps umin, umax, vmin, and vmax to the valid range for NURB patches
· Fix for image scaling when FrameAspectRatio is set

· Point maps are now closed after rendering completes
· Modified test for degenerate polygons in ray tracer to be relative to coordinate size
· updated shadeop.h file to include extern "C" declaration for shadeop table (for C++ compatibility)

29.6 AIR 8.0

· Procedure shaders:  generate new primitives on-demand at render time using the shading language

· Instancer shaders:  create new geometry at render time based on an existing primitive

· 3D Textures and Point Clouds
· New common set of 3D point file formats for all 3D data
· AIR Brick Maps
· AIR Point Maps
· AIR Point Tool (airpt) for converting and manipulating 3D point sets
· Point Maps and Point Clouds can be rendered as geometry using the RIB Geometry call

· Points
· Renamed Attribute "render" "string pointtype" to Attribute "point" "string
type"

· New point type "disk"
· Patches and disks can be oriented perpendicular to a normal vector
· Non-square patches can be specified with a patchaspectratio primitive variable

· New attribute to automatically subdivide large point sets into smaller clusters for more efficient
rendering

· Point width is scaled by a scaling transform

· Curves
· New attribute:

Attribute "curve" "string type" [name]



AIR User Manual443

© 2001-2014 SiTex Graphics, Inc.

replaces Attribute "render" "integer beveledcurve"

· New curve type "tube"
· Ribbon curves compute a more accurate value for the global variable v along the curve length
· Ribbon curves work with uniform normal data
· Fix for ribbon curve orientation problem with right-hand coordinate system
· Fix for linear curves and uniform data
· Curve width is scaled by a scaling transform

· Volume primitives
· New Dw(x) shading language function gives the derivative in the 3rd dimension for a voxel
· Fix for calculatenormal()
· Ray marching works with point-based data

· Procedurals
· Under Windows AIR now recognizes RunProgram procedurals written in Python or Perl and

automatically provides the necessary call to python.exe or perl.exe respectively

· New documentation in this manual
· New examples in $AIRHOME/examples/primitives/procedurals

· Subdivision mesh
· New interpolateboundary tag option:  when the single integer argument is 2, boundary edges

are treated as sharp creases, but boundary vertices with 2 incident edges are not treated as sharp
corners.

· RIB Filters
· Added Display, PointsGeneralPolygons, Shutter, MotionBegin, MotionEnd,
Clipping, Volume

· New -echorif command line option echoes RI filter output to stdout

· Displays
· Individual components of a color output variable can now be saved using array subscript notation.

E.g.,

Display "greylight.tif" "file"
"__diffuse_unshadowed[0],__shadow[0],__specular[0]"

would create a 3 channel file with the first (red) channel of each output variable.

· AIR will automatically recompute a __shadow output value in a rendered image if the
corresponding __diffuse and __diffuse_unshadowed outputs are also present, eliminating artifacts
along edges and in semi-transparent areas.

· Important fix to enable dither

· Geometry export
· OBJ export now handles facevarying normals and texture coordinates
· New attribute to select the coordinate space for exported positions and normals

· Frame number expansion for RIB file names on the command line.  E.g.,

air -frames 19 21 scene#4f.rib

would render scene0019.rib, scene0020.rib, and scene0021.rib.

· New option to interpolate density in fragment shadow maps



History 444

© 2001-2014 SiTex Graphics, Inc.

· Shaders
· Added ReflectionGroups parameter to surface shaders VMetal, VBrushedMetal, VGlass

· Modified many surface shaders to only reference texture coordinates when needed, resulting in
faster rendering and lower memory use when these shaders are used without textures

· New shaders:  texturedarealight, VPhong, VGreyscale
· Shading language option() recognizes Clipping, Shutter, DepthOfField, CropWindow,

FrameAspectRatio
· Shading language attribute() recognizes ShadingRate, Sides, Matte

· RLM License Server
· Update to RLM 5.0
· AIR looks in SITEX_LICENSE and RLM_LICENSE environment variables for the location of the

RLM license file or server if an RLM license file is not present in the bin directory of the AIR
installation.

· Massive
· New note on using groups to render mattes and layers
· New tips for rendering occlusion and how to control occlusion with groups
· New Massive agent light tool for rendering per-agent lights

· AIR Show 3.0
· Histogram display
· Integrated pixel zoom for viewing pixel values
· Wipe between images for comparison
· Simple compositing of multilayer images
· Faster sRGB conversion for 16-bit and float images
· Quick help for mouse actions and keyboard shortcuts

· AIR User Manual
· Command line option list moved from Reference to the Getting Started section
· Attributes list moved from Reference to the Attributes section
· Options list moved from Reference to the Options section
· Reorganized many topics including ambient occlusion and indirect lighting

· Vshade 2.0 (see the separate Vshade documentation for details)

· Many internal changes for the forthcoming 64-bit version of AIR

· Bug fixes:
· Fix for mktex
· Fix for shading interpreter runtime optimizer (recognize that attribute() may write to array

elements)
· FIx for extended phong() per-channel output

· Prefilterclamptoalpha no longer clobbers outline data
· Points as spheres now clipped correctly by near clipping plane
· Fix for z channel output in a multichannel Display call

· Outlines: fix for front/back edge detection
· Fix for shading cache size without motion blur

29.7 AIR 7.0

· New RhinoAir plugin for Rhino 4 (available as a separate download from the SiTex Graphics web
site)



AIR User Manual445

© 2001-2014 SiTex Graphics, Inc.

· Automatic level of detail for polygon meshes

· Support for Houdini 9, including the ability to build and compile shaders within Houdini

· New prefilterclamptoalpha option for better filtering of rendered images with high-dynamic range.

· New alternate noise algorithm

· Most Air light shaders have been extended to allow precise specification of shadow-casting groups
for raytraced shadows.

· New shading language extensions and optimizations to facilitate per-light output values for diffuse,
specular, etc.

· Field rendering

· ClippingPlane RIB statement for arbitrary clipping planes (only affecting camera visibility)

· Indirect illumination and occlusion:
· Occlusion prepass now respects attribute:indirect:reflective:1
· Attribute:indirect:prepass:0 is now compatible with attribute:indirect:reflective:1
· If an object has complex opacity (as indicated by attribute transmission hitmode) a prepass will

also sample surfaces behind the object
· New option to specify a subset/group to use for the indirect or occlusion prepass:

   Option "indirect" "string prepassgroup" ""

· Outlines:
· Toon ids are now handled in a manner that eliminates most extraneous lines on transparent

surfaces
· New global multiplier for outline ink width:

   Option "toon" "float inkwidthmultiplier" 1

· Subsurface Scattering:
· New option to set the max error tolerance for subsurface scattering:

Option "render" "float subsurfacetolerance" [0.005]

· New default subsurfacetolerance of 0.005 (vs 0.05 previously) to eliminate artifacts in some cases

· The names of AOV output channels have been modified to work better with Nuke, ProExr and other
plugins and applications.  The first four channels for each output variable are now appended with .R,
.G, .B, and .A respectively.

· Curves and Points primitives can be used as area lights.

· Curves now compute an accurate t value along the curve length

· RIB filters support many more commands

· Imager shaders:
· Imager shaders are now executed prior to gamma correction (contrary to the RI spec)
· Using an imager shader no longer forces display gamma to 1.
· environment() can safely be called from within an imager shader



History 446

© 2001-2014 SiTex Graphics, Inc.

· mktex and mktexui can convert mirror ball images to lat-long environment maps for rendering.

· New Air Control render queue and airq batch render job submission tool (Windows only)

· New shading compiler option -fover to enable function overloading

· New sample HDR environment maps from Aversis (www.aversis.be)

· TweakAir:
· Relight shade mode now adds __refract ouput if present for better looking glass
· Fix to prevent thread clash with communications thread
· Fix for internal compositing with subpixel sampling

· Air Show:
· New sRGB option to display an image with sRGB gamma correction
· New View menu item to load a background image, which can be toggled with the checked bg

button in the toolbar

· Vshade:
· Better code generation for arrays for faster rendering
· Vshade now adds $AIRHOME/shaders and $AIRHOME/usershaders to the include search

path when compiling shaders
· New DarkTree library category with components for accessing DarkTree shaders (Windows only)
· Vshade now converts block names into valid identifiers when necessary.

· Grouping:
· Group membership has been modified so a group of "" resets to no membership in any group

rather than leaving the current group unchanged.
· A null "subset" ("") value passed to trace() and other ray tracing calls now selects all objects,

equivalent to no subset parameter.

· Shaders
· New shaders:  VShadowedTransparent, VFur, VLayeredMaterials, VLines, VBumpRegions,

VBgEnvironment
· VBlinn provides per-light output channels for diffuse, specular, etc.
· VToon supports multiple diffuse illumination levels or bands
· VDashes supports line patterns

· Bug fixes:
· Air now checks the number and type of RIB shader parameter values against those in the shader

and issues an appropriate error message when there is a mismatch.
· Fix to prevent negative weights for importance sampling
· Important fix to eliminate shadow map request for tile outside the map
· Fix for true displacement with mulitsegment motion blur
· Global time and dtime variables are initialized for auxilliary shading points
· Fixed number of varying values expected for NuCurves
· Corrected spherical projection in many Air surface shaders

· The old lightdome and shadowmap utilities have been removed from the distribution



AIR User Manual447

© 2001-2014 SiTex Graphics, Inc.

29.8 AIR 6.0

· New user manual section with tips for rendering Massive scenes

· New massrib tool for manipulating Massive scenes

· RIB filters

· Adaptive motion blur

· New shading compiler optimizations can reduce initial code size by a factor of 3 or more for complex
shaders generated by MayaMan.  Runtime performance is also improved.

· New bake3d() and texture3d() shading functions for general point set caching and filtering

· New implicit surface primitive for rendering grid data as an isosurface

· The Reprise License Manager (RLM) is now supported in addition to AIR's cilver license manager

· Mesh displacement is now supported for polygon meshes and NURB surfaces

· New attribute to simplify facevarying data on polygon meshes

· New attribute to apply additional smoothing to displaced normals

· New options to cache texture maps locally for improved performance with textures stored on a
network drive

· Overlapping volume primitives are now handled properly

· Occlusion improvements:
· New improved sampling pattern when rendering without the occlusion cache
· New intermediate screen-space cache when maxerror>0 and maxpixeldist=0.
· Better performance with multiple reflection samples and no occlusion cache
· Occlusion can be used with any light source with a shadow name parameter by setting the

parameter value to "occlusion".

· Indirect illumination improvements and changes:
· Much faster rendering of area lights with indirect illumination
· New improved sampling pattern when rendering without an irradiance cache
· The default indirect maxerror attribute value is now 0, which disables irradiance caching.

· Better shadow maps with new options to tune depth values stored with the default midpoint depth
filter

· New method for a shader to query if an output variable needs to be computed for display:

float saved=0;
option("display:varname",saved);

Sets saved to 1 if varname is being saved in an image.

· New option to enable progress reporting equivalent to the -Progress command line switch:

Option "statistics" "integer progress" [1]



History 448

© 2001-2014 SiTex Graphics, Inc.

· Multisegment motion blur no long blurs when the shutter interval is 0, and an appropriate
intermediate position is interpolated based on the shutter open time.

· Vertex motion blur with all motion times the same now uses the first time position without blurring

· Array arguments are now supported in dynamic shade ops

· Support for vertex transform blur for dynamic blob ops without an ImplicitMotion function

· Primitives with constant user data no longer generate a unique shader instance per primitive

· AIR is able to share shader instances across primitives in more cases

· Most AIR surface shaders have a new __constant output variable with the unlit surface color

· The shadowpass shader has a new backshadow switch to enable shadows on surfaces facing away
from a light

· A sample dynamic shadeop (DSO) with source code is now included in the AIR distribution in
$AIRHOME/examples/shadeop

· AIR Show has a new button to display a checker background under images with an alpha channel

· On Linux AIR Show and mktexui no longer reference libglade

· mktex and mktexui have a new option to apply gamma correction to an image

· AIR Space 0.3 (see the separate AIR Space user manual for more information):
· Area light support
· BakeAIR support, including OpenGL viewport display of baked maps and VRML export
· Turntable and camera path animation
· OpenGL display of texture maps
· Material import from RIB files
· Many bug fixes and user interface enhancements

· Bug fixes:

· Motion vector output with Pixel Samples 1x1
· Runtime shader optimization for vtransform()

· Spiral bucket order with crop window and a prepass
· Subsurface scattering and true displacement
· Area computation for triangles during subsurface scattering collection phase
· Shading compiler optimizer bugs affecting array references
· Handling of separate alpha channel for matte objects
· Compiler bug affecting aligned memory address computation in airmt on Linux

29.9 AIR 5.0

· Fragment shadow maps for "deep" mapped shadows

· Output enhancements:
· Per-light output channels
· Multilayer rendering in a single pass



AIR User Manual449

© 2001-2014 SiTex Graphics, Inc.

· Ray Tracing
· Much better sample distribution for shadows and reflections viewed in reflections
· New options provide a coordinate space for background environment map lookups:

Option "reflection" "string envspace" ""
Option "indirect" "string envspace" ""

· Subdivision meshes:
· New attribute to displace an entire subdivision mesh at once:

Attribute "render" "integer meshdisplacement" [1]

This method helps avoid cracks when the displacing function has discontinuities.

· New attribute to split a mesh into subregions for tessellation:

Attribute "render" "integer splitmesh" [1]

The following option gives the maximum number of faces per subregion:

Option "limits" "integer splitmeshfaces" [25]

· Smoother seams between primitives stitched together by MayaMan

· Better true displacement for Blobby primitives with the new meshdisplacement method

· Points primitives
· New mode to render points as spheres:

Attribute "render" "string pointtype" "sphere"

· Much better shading cache performance for motion blurred points
· Bug fix for ray traced points

· Volume primitives:
· Support for mpoint data
· Support for dPdtime for point-based data

· New attribute indicating when a procedural primitive contains a volume primitive:

Attribute "visibility" "integer volume" [1]

· Much more efficient memory use for particle systems instanced with individual primitives with
constant primitive shader variables

· Much more efficient shading for motion-blurred unbeveled curves

· TweakAIR:
· Support for moving area lights
· Fix for black dots in indirect and envlight light caches with multiple threads

· AIR Show
· AIR Show can read AIR shadow maps (with a .sm or .shd extension)

· Fix for refresh bug with small or rapidly rendered buckets
· Fix for bug on Linux that prevented AIR Show from restarting immediately
· When saving images AIR Show automatically converts data to the proper number of channels and



History 450

© 2001-2014 SiTex Graphics, Inc.

data type for the selected image format.

· AIR Space
· Cameras can be viewed and positioned in OpenGL views
· Per-light output channels
· New introductory tutorial in the AIR Space user manual

· New option to control shading cache memory

· New Optimization section in the AIR user manual

· Optimization to eliminate unnecessary primitive data for MayaMan shaders

· The Linux distribution is now built on Red Hat 9 instead of Red Hat 7.2

· On Windows AIR and other programs have the largeaddressaware flag set, allowing them to access
up to 4 GB of memory on 64-bit versions of Windows.

· The maximum number of Pixel Samples has increased to 32 x 32.

· New ReelSmartMotion shader computes motion vectors for the Reel Smart Motion Blur plugin from
RE:Vision Effects, Inc. (www.revisionfx.com)

· Motion blurred primitives with time intervals that are a subrange of the Shutter time interval are
properly dimmed.

· AIR recognizes gzipped files without a .gz extension

· Vortex now works with display drivers that expect data in scanline order

· Configuration instructions for previewing AIR shaders in Houdini

· The BMP and TIFF display drivers now accept "resolution" and "resolutionunit"
parameters

· New shaders:  VSketchOutline, VNormalMap, VTangentNormalMap

· Bug fixes:
· Fix for traced shadow bug causing horizontal line artifacts
· Fix to prevent min z depth filtering from trashing AOVs
· On Windows AIR no longer tries to open AIR Show locally when launched with the -dhost option
· On Linux airmt supports the -dhost switch.

29.10 AIR 4.1

· AIR Space, a new interactive shading and lighting interface for AIR and TweakAIR.  See the
separate AIR Space User Manual for more information.

· New transmission attributes for compatibility with PRMan:

Attribute "visibility" "integer transmission" [1]

enables visibility to shadow rays.

Attribute "shade" "string transmissionhitmode" ["primitive"]



AIR User Manual451

© 2001-2014 SiTex Graphics, Inc.

determines how an opacity value is generated for shadow queries:  using the "primitive" opacity or
evaluating the surface "shader".

· Support for conditional RIB

· AIR can now parse gzipped RIB files.  Gzipped files must have a file extension of .gz.

· New interpolation option for facevarying subdivision mesh data

· New option to apply normal filtering to depth values:

Option "render" "string zfilter" "normal"

· Automap improvements:
· Much better cache performance
· Now work with point lights (in addition to spotlights and distant lights)

· TweakAIR improvements:
· Better handling of displacement shader tweaking
· New reflection cache improves refresh performance for objects with traced reflections
· New option to automatically update an object when a reflected object changes:

Option "ipr" "integer retrace" [1]

· Many bugs fixed on Linux

· New, much improved environment map filtering

· AIR will automatically generate tangent vectors for polygon meshes based on the assigned texture
coordinates

· Light shaders can query surface output parameters

· AIR Show can display AIR texture maps

· Support for texture-mapped area lights

· New -surf command line option to override the surface shaders in a RIB file

· Many surface and displacement shaders have been modified to employ new conventions for 2D and
3D patterns recognized by AIR Space

· New shaders:  VRubber, VDecal2D (replacing VDecal2DPlastic), VDecal3D (replacing
VDecal3DPlastic)

· Vshade now accepts varying input parameters

· Bug fixes:
· Failure to free automaps at end of frame
· Facevarying interpolation on subdivision meshes
· diffuse() handling __indirectlight vars

· Fix for subsurface scattering shaders included with AIR to use all 3 scatter distances
· Random crash with outlining and multithreading
· rayhittest() now performs a self-intersection check if the ray origin is the current shading

location



History 452

© 2001-2014 SiTex Graphics, Inc.

· Fix for builtin blinn() function
· Per-curve s,t data is supported
· Volume primitives accept user attributes
· Fix for using a SSS cache with true displacement

29.11 AIR 4.0

· Volume primitives for fast volumetric rendering

· Automaps:  automatic shadow maps

· TweakAIR improvements:
· New fast re-lighting shading mode
· TweakAIR now supports the indirect and occlusion prepasses
· New option for anti-aliasing with multiple pixel samples:

Option "ipr" "integer[2] pixelsamples" [1 1]

· Simple RIB command filtering

· Improved curve rendering:
· More efficient rendering of catmull-rom and b-spline curves
· Memory reduced up to 50% for general curve rendering

· Subdivision mesh improvements:
· Optimized tessellation reduces memory usage and render time
· Better interpolation of facevarying variables
· Rendering of border faces with sharp edges w/o the interpolate boundary flag

· Points primitives may now be rendered as bilinear patches for sprites

· Shading language extensions:
· new builtin blinn() function implements a Blinn specular illumination model
· new builtin brushedspecular() function implements an anisotropic specular function similar to

Ward's
· diffuse() accepts an optional "roughness" parameter for Oren-Nayer shading
· specular() accepts an optional fourth sharpness parameter for sharp-edged specular highlights
· phong() accepts an optional fourth argument for the extended Phong model
· New special spline types "solvecatrom" and "solvelinear" for spline()

· New and improved shaders:
· Many shaders have been modified to take advantage of the new builtin illumination functions in

AIR 4, yielding faster render times
· The particle shader now supports a more general single-scattering illumination model
· New shaders:  VWeave, VBlinn, VSmokeSurface, VCumulusCloud

· Better filtering of transparent and semi-transparent objects for depth pass renders:
· No depth value is stored for completely transparent shading locations
· For semi-transparent surfaces, only the nearest depth is stored with no transparency

· New option to map a range of depth map values prior to quantization:

Option "render" "float[2] zrange" [zmin zmax]



AIR User Manual453

© 2001-2014 SiTex Graphics, Inc.

If zmin is not equal to zmax, z depth values are scaled so that z is 0 at zmin and 1 at zmax, and
clamped to the range 0..1.

· AIR Show enhancements:
· New depth map display mode
· New button to jump between the two most recently viewed frames

· New attributes to scale and offset the times passed in a motion block:

Attribute "render" "float shutterscale" [1]
Attribute "render" "float shutteroffset" [0]

These attributes are useful for re-using archives in an animated sequence.

· Display enhancements:
· The Display call accepts inline variable declarations.  E.g.,

Display "Diffuse.tif" "file" "varying color __diffuse"

· The real names of arbitrary output variables are passed to display drivers, so that drivers such as
OpenEXR can save full channel names.

· New edge mask option when rendering shadow maps may improve shadows cast by small or thin
objects:

Option "render" "integer shadowedgemask" [1]

· PointsGeneralPolygons now detects and handles non-planar 4-sided polygons

· The -Progress command line switch now outputs current memory, peak memory, and elapsed
time in addition to a percent complete value.  E.g.,

R90000  55%  1334K  2444K  19S

· New additions to the Plugins and Companions page:
· XSIMan, a new plugin for XSI from Graphic Primitives
· Temerity Pipeline, a production management application

· Bug fixes:
· Uniform string primitive variables were not handled properly
· Attribute comparison bug affecting bakemaps for BakeAIR
· Subtle noise() bug for sample locations close to but less than an integer
· Subtle bug in normal compression for normals near (0,1,0)
· Binary rib bug in handling of 16-bit string ids
· Long shader parameter names are compared properly with truncated names in .slb files
· The shading compiler accepts a variable string argument to ctransform()

29.12 AIR 3.1

· TweakAIR, a new product for interactively tweaking shading and lighting in a scene

· New Photoshop display driver for producing layered Photoshop files

· New Photoshop image reader



History 454

© 2001-2014 SiTex Graphics, Inc.

· Shading language extensions:
· New shading language voronoi() function that is 4 times faster than the equivalent shading

language code
· diffuse(), phong(), and specular() accept an optional initial light category
· Extended diffuse() function with output variables to facilitate multipass rendering

· More efficient rendering of PointsGeneralPolygons and polygons with texture data

· Additional attributes for geometry export:
· Export to ASCII RIB
· Export to RIB using DelayedReadArchive
· Automatic generation of __Pref data
· Automatic generation of __Nref data

· The gather() function has a new "othreshold" parameter to control ray continuation

· Faster lighting calculations in MayaMan, especially global illumination with maxerror=0

· New toon option to set a minimum ink width when the fade-with-distance option is enabled:

Option "toon" "float mininkwidth" [0.0]

· More accurate ray tracing with better detection of degenerate triangles

· New option to set the maximum grid size for displacement:

Option "limits" "integer displacementgrid" [8]

· More efficient handling of uniform data

· Optimized shading structure storage for BakeAIR, especially for primitives that are not "baked"

· Inline archive support for Procedural RunPrograms

· Changes to the AIR shader library:
· Most surface shaders have additional output variables for multipass rendering:
__diffuse_unshadowed, __shadow, and __indirect

· Parameter names for many older shaders have been made consistent with more recent shaders.
(For example, the diffuse strength parameter is now named Diffuse instead of Kd.)

· A new VMetal shader is the new standard metal shader (replacing the SIshinymetal shader)
· New VGranite shader replaces VGranite2
· Several shaders have been renamed: Dashes to VDashes, RustyMetal to VRustyMetal, Concrete

to VConcrete
· The ambient_indirect and ambient_envlight shaders are no longer included.  Their functionality

has been replaced by the addition of an __indirect output variable to the AIR shaders.

· The following shaders are no longer included with AIR:  wood2, VLaqueredInlaidWood, SIdents
(use VDents), backgroundgradient (use VBgGradient), VShinyCeramic (use VCeramic)

· AIR Show enhancements:
· On Windows a sequence of images can be saved as an AVI file
· New Channels window displays the extra channels for images with multiple output variables

· New redesigned AIR Control tool

· Several old tools have been removed form the AIR distribution:  Visual Browser, LightEd, MatMap,



AIR User Manual455

© 2001-2014 SiTex Graphics, Inc.

and the old AIR Control.  The last versions of these tools are available for download:

http://www.sitexgraphics.com/oldtools.zip

· Bug fixes:
· Important fix for illuminate() bug that caused surfaces facing away from a light to be "lit"

anyway
· "shader" space for shader declarations in inline archives
· Uniform primitive variables
· Shadow maps with no blur and shadows at edges
· Illuminance() cache category comparison
· Fix for outlining with an indirect or occlusion prepass
· Fix for runtime shading optimization that very rarely caused a silent crash
· Fixed failure to fully reset occlusion cache between frames

29.13 AIR 3.0

· Geometry export for displacement baking and modeling

· Improved toon rendering:
· The viewport of a rendering with outlines now matches the view without outlines
· New depth-based edge-detection method
· New silhouette edge-detection method based on detecting boundaries between front- and back-

facing polygons in the rendering mesh
· Outlines may now be saved as a separate output image with the new __toonline output variable
· Faster rendering with large maxinkwidth settings
· New special region id of -2 can be used to outline every polygon in a rendering mesh

· Fast volumetric fog with a new foglight() function

· Vector texture support with Alex Segal's Vtexture

· New FreeObject RIB command frees an object created with ObjectBegin/ObjectEnd

· New FreeArchive RIB command frees an inline archive created with ArchiveBegin/ArchiveEnd

· Shading improvements:
· New dead-code elimination and constant-folding capabilities in the shading compiler produce

better code
· Shader execution optimization yields better performance with many AIR shaders

· New depth (z) filtering for multiple pixel samples:  with multiple pixel samples the output depth is now
the minimum of the samples, making it easier to generate a depth map along with a beauty pass.

· Global illumination improvements:
· Optimized texture access when shading indirect rays
· Caustics are no longer evaluated during the indirect prepass

· Ray tracing improvements:
· Optimized shadow tracing for many semi-transparent objects
· Ray tracing storage reduced 2-3% for large scenes
· Improved trace blur for interreflections



History 456

© 2001-2014 SiTex Graphics, Inc.

· Displacement improvements:
· Automatic true displacement detection in AIR displacement shaders.  Users no longer need to set

a TrueDisplacement parameter for AIR shaders; this feature is now completely controlled by the
true displacement attribute.

· Primitives with custom user data no longer use excessive shading structures with true
displacement

· Photon map queries are about 10% faster

· New reader and display driver for Radiance HDR image files

· New AIR texture display driver for rendering AIR texture maps directly with BakeAIR or AIR

· Shader additions and changes:
· New VScreen surface shader replaces the old SIscreen and SIholes shaders (the old source code

can still be found in $AIRHOME/shaders/oldsrc for those interested).

· New DarkTreeDisplacement shader allows DarkTree shaders to be used for displacement.
· New VFog volume shader for fast volumetric fog
· New V2SidedPlastic shader allows separate shading for each side of surface
· New VShadowedConstant shader provides a constant-colored surface with shadows
· Most displacement shaders have been updated with more descriptive parameter names and

automatic true displacement detection
· The SIGlass surface has been deprecated in favor of the new VGlass shader

· AIR Show 2
· Tabbed output windows have been replaced by a list of images with thumbnails along the right

side of the main AIR Show window.  Among other benefits this change circumvents the Windows
limit on the number tabs in a single window.

· The new AIR Show largely eliminates a problem on Linux where the display window would
sometimes freeze during a rendering.

· The toolbar may now be hidden and shown without restarting AIR Show.
· On Windows the currently displayed image may be copied to the clipboard.  The image will copied

as displayed; i.e., the raw output data will not be copied.

· New and improved mktex and mktexui texture conversion utilities:
· Angular probe images can be converted to AIR environment maps
· Source images may be flipped, rotated and resized
· Output data format may be specified as 8-bit, 16-bit, or float independent of source format
· mktex can output to any image format recognized by AIR

· Vshade 0.4.  See the separate Vshade manual for detailed information.

· Bug fixes
· Important bug fixed in insertion & sorting code
· Ray tracing hang bug
· Spiral bucket order with a crop window failed sometimes
· pow(x,y) now works properly with negative y
· Rare divide by 0 error in occlusion
· DelayedReadArchives failed to inherit the current true displacement attribute



AIR User Manual457

© 2001-2014 SiTex Graphics, Inc.

29.14 AIR 2.9

· Multithreading on Linux (in addition to existing support for multithreading on Windows)

· Importance-based rendering for faster rendering

· Texture readers for additional image input formats

· Faster raw ray tracing performance

· Ambient occlusion improvements:  faster rendering, better quality, less memory

· Scene storage optimization for memory reduction of 10-20% for typical scenes.  Additional
optimization for polygon meshes.  Houdini users in particular should see a dramatic decrease in
memory use for polygonal objects.

· Support for SideFx's Houdini

· New parameters for environment() and trace() to support anisotropic reflection

· Modified VBrushedMetal shader and a new VBrushedPlastic shader with anisotropic reflections

· Interior and Exterior volume shaders

· New VSmoke volume shader (see the example in $AIRHOME/examples/effects)

· New pixel filters:  disk, mitchell, and lanczos

· Faster true displacement

· New attribute to indicate whether displacement takes place only in the direction of the surface
normal:

Attribute "render" "integer normaldisplacement" [1]

· New attribute to select triangles instead of quads for displacement meshes:

Attribute "render" "integer triangledisplacement" [1]

Using triangles may reduce artifacts at the cost of increased rendering times.

· Dispersion simulation for caustics

· AIR now reads from the standard input stream if a file name is not provided.  To display help
information, use a command line argument of - or ?

· A new TIFF display driver supports lzw compression on Windows (and on Linux systems whose
libtiff library supports lzw compression).

· The texture() shading language function now supports a "filter" parameter, though its use is
discouraged as it incurs a performance penalty and may produce inferior results if used improperly.

· "cosine" distribution for gather() now respects the angle parameter

· New mktexui graphical user interface for the AIR texture-making utility mktex



History 458

© 2001-2014 SiTex Graphics, Inc.

· RiDeformation has been de-supported

· BakeAIR improvements:
· BakeAIR now implements the indirect and occlusion prepasses
· A new option allows control of the border created around rendered regions in a baked map

· AIR Show improvements:
· AIR Show reads image files in any format supported by AIR
· AIR Show options are now saved between sessions

· The multithreaded version of the Cilver floating license manager is now included in the AIR
distribution.  All users are encouraged to upgrade to this version if they have not already done so.

· The default shading type for shadows is now "Os" (use the object's opacity attribute).  For shaders
with complicated opacity (e.g., a screen shader), you will need to set the shadow type to "shade".

· Bug fixes:
· Better handling of wide filter-widths to prevent changes to the viewport based on filter width, which

could cause a misalignment when compositing AIR renders with output from other renderers
· Fix for bogus X shading location in motion blur
· Fix for stall condition with multiple threads and GI
· Fix for process priority on Windows
· JPEG display driver fix
· Imager shaders now work with outlining
· Traced shadows with 1 sample blur properly
· Shadow map filtering fixed near map edges

29.15 AIR 2.8

· Subsurface scattering

· New collection capability to generate and query a set of points distributed over a group of surfaces
(the underlying capability on which the new subsurface scattering feature is built)

· Outline rendering for cartoon rendering and illustration

· Semisharp creases for subdivision meshes have been implemented using a new "linear" crease tag.
(Conversion of the standard "crease" tag takes place automatically.)

· A new shadow map filtering algorithm produces beautiful smooth results and no longer requires
using and tweaking a shadow "samples" parameter.  Shadow maps now produce much nicer results
with transparent and motion blurred objects.

· Vortex now supports the indirect and occlusion prepasses.

· Faster true displacement

· A  new attribute controls whether an object is sampled during an indirect or occlusion prepass:

Attribute "indirect" "integer prepass" [1]

· New option to set the rendering process priority on Windows

· New __threshold tag for blobbies



AIR User Manual459

© 2001-2014 SiTex Graphics, Inc.

· A new $AIRHOME/usershaders directory in the AIR home directory (included in the default search
path) has been added to provide a location for custom shaders that are not part of the standard AIR
distribution.

· A new $AIRHOME/procedurals directory is in the default procedural search path

· ArchiveInstance will now attempt to create an instance from an archive file if an existing instance
is not found.

· For shadeop DSOs AIR now looks for a DLL with an abbreviated name.  E.g., for shadeop MyTest,
AIR will look for MyTest.dll, MyTes.dll, MyTe.dll, and MyT.dll in that order.

· Basic texture statistics are now reported in the stats output.

· Faster ambient occlusion (about 5%)

· The gather() instruction now accepts a "distribution" parameter that specifies the distribution of
samples - either "uniform" or "cosine".

· New shaders: VGlass, VSkin, VTexturedBump, VTranslucent, VTranslucentMarble

· A link to Massive has been added to the Plugins and Companions page

· Bug fixes:
· Fix for a rare condition in blobbies
· Fix for user attributes and Procedural primitives
· Fix for case where a freed prim was queried for its motion position
· Fixed token handling for Procedural DelayedLoad DLLs
· Fixed bug where displaced surfaces were incorrectly culled


	Getting Started
	Installation
	Gamma Correction
	Rendering
	Linux Notes
	Command Line Switches

	What's New
	Color
	Spectral Color Definition
	Spectral Prefiltering and Chromatic Adaptation
	Tone Mapping

	Image Quality
	Geometry Sampling
	Shader Sampling
	Anti-Aliasing
	Pixel Filters
	Clamp to Alpha
	Field Rendering
	Hidden Surface Methods

	Output
	Multipass Rendering
	Rendering in Layers
	Light Channels
	Stereo and Multicamera Rendering
	Motion Vector Output
	Deep Images
	Display Drivers
	bmp (Windows Bitmap)
	deeptxt (Deep Image Text File)
	exr (OpenEXR)
	framebuffer
	hdr (Radiance Image Format)
	jpeg (JPEG Interchange File Format)
	pic (Softimage PIC)
	png (Portable Network Graphics)
	psd (Photoshop)
	ptx (PTEX)
	rpf (Rich Pixel Format)
	tga (Targa)
	tiff (Tag Image File Format)
	sgi (SGI Image Format)
	shadow (AIR Shadow Map File)
	texture (AIR Texture Map)

	Custom Display Drivers

	Options
	Runtime Control
	Search Paths
	Simple RIB Filtering
	Shading
	Network Cache
	File Management
	User-Defined Options

	Attributes
	Visibility
	Sidedness
	Grouping
	User-Defined Attributes

	Primitives
	Approximation of Curved Surfaces
	Polygons
	Subdivision Surfaces
	Points
	Curves
	Blobbies and Dynamic Blob Ops
	Procedurals
	Implicit Surfaces
	Trim Curves
	Instancing with Inline Archives

	Materials
	Shader Guide
	Common Shader Features
	Illumination Models
	3D Patterns
	2D Patterns
	3D to 2D Projections
	Coordinate Spaces

	Displacement
	Displacement Shaders
	bumpy
	DarkTreeDisplacement
	OceanWaves
	VBrickGrooves
	VBumpRegions
	VCracks
	VDents
	VDimples
	VHammered
	VNicks
	VNormalMap
	VPillows
	VRibbed
	VRipples
	VStuccoed
	VTangentNormalMap
	VTexturedBump
	VThreads
	VWeaveDisplacement

	Environments
	envColor
	envMap
	envPhysicalSky

	Generics
	genColor
	genOcclusion
	genQueryBakedMap
	genTextureUV
	genUserAttributes
	genUV

	Imagers
	background
	LensFlareImager
	Paper
	sRGB
	ToneMap
	VBackDrop
	VBgEnvironment
	VBgGradient
	VGreyscale
	WatercolorPaper

	Instancers
	instCarpet
	instMultipleArchives
	MassiveAgents
	VArrayOnCurve
	VArrayOnSurface
	VExtrude
	VGrowFur
	VInstanceArchive
	VInstanceTree
	VShowBound

	Lights
	ambientlight
	arealight, arealight_baked
	arealight2, arealight2_baked
	cardlight
	caustic, caustic_baked
	distantlight, distantlight_baked
	distant_projector
	distant_window_light
	envlight, envlight_baked
	indirect, indirect_baked
	indirectchannels
	massive_envlight
	massive_indirect
	photometric_pointlight
	pointlight, pointlight_baked
	portallight
	sky_portallight
	spherelight
	spotlight, spotlight_baked
	spot_projector
	spot_window_light
	sun_window_light
	sunlight
	texturedarealight
	uberlight

	Procedures
	V3DArray
	VTree

	Strokes
	strokePencil
	strokeWatercolorEdge

	Surfaces
	Bake3d
	BakedSurface
	BakeTangentNormalMap
	CausticPass
	ClownPass
	constant
	DarkTreeSurface
	defaultsurface
	depthpass
	Emitter
	FakeCarpet
	Glow
	IndirectPass
	massive_occlusionpass
	matte
	metal
	MotionPass
	occlusionpass
	OceanSurface
	OceanSurfaceWithFoam
	paintedplastic
	particle
	plastic
	ReelSmartMotion
	shadowpass
	shinymetal
	ShowNormal
	ShowPosition
	SimpleMetal
	SimplePlastic
	UseBackground
	V2SidedPlastic
	VAnimatedMap
	VBlinn
	VBrick2D
	VBrushedMetal
	VBrushedPlastic
	VCarPaint
	VCeramic
	VClay
	VCloth
	VClothAdvanced
	VCumulusCloud
	VConcrete
	VDashes
	VDecal2D
	VDecal3D
	Velvet
	VFabric
	VFur
	VGlass
	VGradient
	VGranite
	VGrid2D
	VHair
	VHexTile
	VLayeredMaterials
	VLeather
	VLines
	VMarble
	VMetal
	VPhong
	VPhysicalMetal
	VPhysicalPlastic
	VPlanks
	VPlastic
	VRubber
	VRustyMetal
	VScreen
	VShadeCarpet
	VShadowedConstant
	VShadowedTransparent
	VShinyTile2D
	VSketchOutline
	VSkin
	VSmokeSurface
	VTexturedConstant
	VThinGlass
	VTone
	VToon
	VTranslucent
	VTranslucentMarble
	VWatercolor
	VWeave
	VWood

	Volumes
	fog
	VFog
	VSmoke

	DarkTree Shaders
	Layered Shaders and Shader Networks
	The Shading Language
	Shading Language Extensions
	User Structures
	areashadow()
	bake3d()
	blinn()
	brushedspecular()
	caustic()
	collect()
	cooktorrance()
	dictionary()
	diffuse()
	environment()
	foglight()
	fulltrace()
	gather()
	indirectdiffuse()
	irradiancecache()
	isbaking()
	isindirectray()
	isphoton()
	isshadowray()
	meshinfo()
	microcylinder()
	occlusion()
	rayhittest()
	rayinfo()
	raylevel()
	ribprintf()
	shadow()
	specular()
	str_replace_last_number
	subsurfacescatter()
	texture()
	texture3d()
	trace()
	visibility()
	voronoi()


	2D Texture Mapping
	Projecting Textures ("Decaling")
	Vector Textures
	PTEX:  Per-Face Texture Mapping

	3D Textures & Point Sets
	Lighting
	Area Lights
	Shadows
	Ray Traced Shadows
	Shadow Maps
	Fragment Shadow Maps
	Automaps

	Indirect Lighting
	Ambient Occlusion
	Ray-Traced Occlusion
	Depth-Mapped Occlusion
	Point-based Occlusion

	Image-Based Lighting
	Photometric Lights and IES Profiles
	Caustics
	Subsurface Scattering (SSS)
	Baking Shadows and Illumination

	Ray Tracing
	Importance-Based Rendering
	Optimizing Memory for Ray Traced Objects

	Reflections
	Ray Traced Reflections
	Reflections using Environment Maps
	Anisotropic Reflections
	BRDF Reflection Sampling

	Motion Blur, DOF, & LOD
	Motion Blur
	Depth of Field
	Level of Detail

	Outlines for Toon Rendering and Illustration
	Illustration Shaders and Examples

	Volume Rendering
	Writing Shaders for Volume Primitives
	RIB Volume Primitive

	Pipeline, Workflow, and Optimization
	Conditional RIB
	RIB Filters
	Geometry Export
	General Optimization Tips

	TweakAir for Interactive Rendering
	TweakAIR Options
	TweakAIR Attributes
	TweakAIR API
	IrBegin
	IrColor
	IrDeleteLight
	IrEnd
	IrIlluminate
	IrLightTransform
	IrNewDisplacement
	IrNewEnvironment
	IrNewImager
	IrNewLight
	IrNewSurface
	IrOpacity
	IrRefreshWindow
	IrSelect
	IrTweakAttribute
	IrTweakCamera
	IrTweakCoordinateSystem
	IrTweakDisplacement
	IrTweakEnvironment
	IrTweakImager
	IrTweakLight
	IrTweakOption
	IrTweakSurface
	IrWriteImage


	BakeAir for Baking Textures and Meshes
	Applications for Baked Textures
	Baking Textures with BakeAir
	Baking PTEX Textures with BakeAir
	Writing Bake-Aware Shaders
	Baking Meshes with BakeAir

	Massive
	Rendering with AIR from Massive
	Command Line Rendering of Massive Scenes
	Display Customization and Multipass Rendering
	massrib
	Shading and Lighting in Air Space
	Ambient Occlusion in Massive
	Mattes, Layers, and Groups
	Eliminating Shadow Artifacts on Terrain
	Rendering Massive Agents with Maya & MayaMan
	Automatic Level of Detail
	Massive Agent Light Tool (malt)
	Rendering Massive Agents in Rhino
	Optimization Tips for Massive Scenes
	Rendering a Depth Pass
	Adding a background image

	Houdini
	Configuring Houdini for Air
	Rendering with Air from Houdini
	Houdini Lights and Air
	Ambient Occlusion with Air and Houdini
	Global Illumination with Air and Houdini
	Creating Shaders for Air in Houdini
	Adding New Shaders to Houdini

	Tools
	AIR Control
	AIR Point Tool (airpt)
	AIR Show
	Image Display
	View Navigation
	Depth Map Display
	Rendering to a Remote Machine
	Framebuffer Parameters
	Command Line Options
	Menus
	File
	Edit
	View
	Animate
	Sound (Windows only)
	Options

	Keyboard Shortcuts

	MakeLIF
	Shading Compiler (shaded)
	Shader Info (slbtell)
	Texture Converter (mktex)
	Texture Maps
	Shadow Maps
	Latitude-Longitude Environment Maps
	Cube-Face Environment Maps
	Mirror Balls and Angular Maps
	Compositing
	Stitching Images

	Texture Converter User Interface (mktexui)
	Vortex

	Plugins and Companions
	Resources
	License Agreement
	Copyrights, Trademarks, and Credits
	History
	AIR 13.0
	AIR 12.0
	AIR 11.0
	AIR 10.0
	AIR 9.0
	AIR 8.0
	AIR 7.0
	AIR 6.0
	AIR 5.0
	AIR 4.1
	AIR 4.0
	AIR 3.1
	AIR 3.0
	AIR 2.9
	AIR 2.8


