
Vshade
The Visual Shader Authoring Tool

by Scott Iverson

©2004-2014 SiTex Graphics, Inc.



Table of Contents

Foreword 0

Part I Introduction 3

Part II What's New 4

Part III Building Shaders 4

................................................................................................................................... 51 Block Types 

.......................................................................................................................................................... 5Input Blocks 

.......................................................................................................................................................... 6Output Blocks 

.......................................................................................................................................................... 6Group Blocks 

.......................................................................................................................................................... 7Function Blocks 

.......................................................................................................................................................... 7Annotation Blocks 

.......................................................................................................................................................... 8Illuminate Block 

.......................................................................................................................................................... 8Solar Block 

................................................................................................................................... 82 Common Block Operations 

................................................................................................................................... 93 Block Parameters 

................................................................................................................................... 104 Connecting Blocks 

................................................................................................................................... 115 Compiling and Previewing 

................................................................................................................................... 116 Interactive Parameter Tweaking 

................................................................................................................................... 117 Shader Documentation 

................................................................................................................................... 128 Compiler Errors 

................................................................................................................................... 129 Debugging a Shader 

................................................................................................................................... 1210 Conditional Execution 

................................................................................................................................... 1211 Loops 

Part IV Component Library 13

................................................................................................................................... 141 Bump Layers 

................................................................................................................................... 152 Bumps 

................................................................................................................................... 163 Color 

................................................................................................................................... 174 DarkTree 

................................................................................................................................... 175 Float 

................................................................................................................................... 186 Functions 1D 

................................................................................................................................... 197 Functions 2D 

................................................................................................................................... 208 Functions 3D 

................................................................................................................................... 209 Globals 

................................................................................................................................... 2110 Layers 

................................................................................................................................... 2111 Lighting Models 

................................................................................................................................... 2312 Lighting Primitives 

................................................................................................................................... 2413 Materials 

Vshade - The Shader Authoring ToolI

©2004-2014 SiTex Graphics, Inc.



................................................................................................................................... 2514 Noise 

................................................................................................................................... 2615 Patterns 1D 

................................................................................................................................... 2716 Patterns 2D 

................................................................................................................................... 2817 Patterns 3D 

................................................................................................................................... 3018 Point 

................................................................................................................................... 3019 Query 

................................................................................................................................... 3120 Reflections 

................................................................................................................................... 3121 RIB 

................................................................................................................................... 3222 Shapes 2D 

................................................................................................................................... 3323 Texture 

................................................................................................................................... 3324 Transformations 

................................................................................................................................... 3425 Transitions 

................................................................................................................................... 3426 Trigonometry 

Part V Tutorials 34

................................................................................................................................... 351 A First Surface Shader 

................................................................................................................................... 372 A First Displacement Shader 

................................................................................................................................... 383 A Surface Shader with Bumps 

................................................................................................................................... 394 A Surface Shader with Texture Maps 

................................................................................................................................... 425 Discrete Color Patterns: Simple Brick 

................................................................................................................................... 446 Continuous Color Patterns:  Simple Marble 

................................................................................................................................... 467 3D to 2D Projections 

................................................................................................................................... 498 Reflections with Angle Blend 

................................................................................................................................... 529 A Rippled Displacement Shader 

................................................................................................................................... 5310 A Wood Shader with Decals 

Part VI Reference 55

................................................................................................................................... 551 3D to 2D Projections 

................................................................................................................................... 562 Coordinate Spaces 

................................................................................................................................... 573 Blend Modes 

Part VII History 58

Index 0

IIContents

II

©2004-2014 SiTex Graphics, Inc.



Vshade - The Shader Authoring Tool3

©2004-2014 SiTex Graphics, Inc.

1 Introduction

Vshade is a graphical user interface for constructing shaders.  Shaders are small programs used by Air
to perform shading and lighting calculations.  Traditionally a shader is created by writing a text file in a
C-like programming language.  With Vshade a Visual shader is built by the simple process of
connecting blocks on the screen.  If you can drag an object across the screen and connect two points
with a line, you can build a shader with Vshade.

Shader Types

Vshade can be used to make the following types of shaders:

Surface:  A surface shader calculates the opacity and reflected color of a surface.

Displacement:  A displacement shader moves a surface to add small geometric features such as
wrinkles, bumps, and grooves.

Volume:  A volume shader modifies the color of a surface to simulate atmospheric effects such as
smoke and fog.

Light:  A light shader calculates the color and direction of illumination emitted from a light source.

Imager:  An imager shader modifies the color emitted by the renderer at each pixel.

Procedure:  A procedure shader creates new objects on-demand at render time.

Instancer:  An instancer shader creates new objects at render time based on properties of the base
primitive.

Environment:  An environment shader computes the color returned by traced rays that miss all
objects in the scene.

Generic:  A generic shader can be used to encapsulate functionality for inclusion in a network of
shaders.  Generic shaders are compatible with all other shader types.

Stroke: A stroke shader can be used to shade vector-based outlines for customized line drawing.

Component Library

Vshade comes with a collection of over 50 pre-designed components to use in constructing shaders.
You can create your own components either by writing a function in the underlying shading language or
by combining a group of existing components into a new function.

VSL Files

A Visual shader is saved as a specially-formatted shading language source file.  VSL files are self-
contained.  A VSL file can be compiled and used with any fully functional RenderMan®-compatible
renderer.  The components included with Vshade are a copyrighted part of the Visual Tool Kit, but you
may distribute the shaders you build with Vshade as you see fit.

Tutorials

The best way to learn to construct shaders is to practice.  Vshade includes tutorials that cover the
Vshade interface and common shader-building techniques.  Each tutorial contains step-by-step
instructions for building a particular shader, as well as suggestions for extending the shader beyond



Introduction 4

©2004-2014 SiTex Graphics, Inc.

what is covered in the tutorial.

Gamma Correction for Display and Textures

The Vshade Run menu contains two items to help convert colors between the non-linear sRGB color
space commonly used to display images and the linear color space used by Air for computation.

Display:  When Display Image in sRGB is checked, the preview image is converted from linear rgb to
sRGB color space prior to display.

Textures:  When Texture Color Space Is sRGB is checked, Air will automatically convert colors in
source texture files from sRGB color space to linear rgb space.  This option does not affect textures
that have been converted to the Air texture format.

By default both options are enabled.

2 What's New

Vshade 14.0 (December 2014)

· Support for the new stroke shader type in Air 14.
· New Split Parameters edit option to split a parameter block into two blocks.
· Support for integer and boolean parameter types.

3 Building Shaders

To begin a new shader, choose New in the File menu and select a shader template.  The template
determines the shader type and in most cases provides a basis upon which to construct a certain kind
of shader.  For example, the Surface_Plastic template includes a block with a plastic illumination
model.

A visual shader is constructed by adding blocks from the component library and connecting them
together in meaningful ways.  Vshade comes with a large collection of prebuilt components that are
useful in building interesting shaders.

Building simple surface shaders is easy with the components in the Materials category.  For example:

· Start Vshade.
· Select New in the File menu and choose the Surface_Plastic template.
· Select Save in the File menu and save the new shader as PlasticWood.vsl in a convenient

directory.
· Open the Materials category in the component list and select the Wood component.
· Click in the shader construction area and place the Wood component to the right of the Plastic

block.
· Click on the Color output from the Wood block, then on the BaseColor input to the Plastic block to

connect the two.  A connecting line should appear.

· Click the Render button  to see the new shader.

That's how easy it is to make a simple shader.  The Tutorials section contains many brief tutorials on
different aspects of shader construction.



Vshade - The Shader Authoring Tool5

©2004-2014 SiTex Graphics, Inc.

Editing is Easier than Creating

For more complex shaders it is often better to start with an existing shader that is close to the shader
you want.  The AIR distribution includes dozens of prebuilt shaders that can be used as starting points
for your own shaders.  You can find the source for shaders included with AIR in the vshaders directory
of your AIR installation.

3.1 Block Types

Topics:

Input Blocks
Output Blocks
Group Blocks
Function Blocks
Annotation Blocks
Illuminate Block
Solar Block

3.1.1 Input Blocks

An input block defines input parameters for a group block or a shader.

Use an input block in a shader to define variables that the user can change.  When an input block is
placed in a shader, any parameters will appear in the parameter list for the shader.

Use an input block in a group block to define variables that are supplied by connections to the block.

Creating an Input Block

· Click the Input button  or select New Input from the Blocks menu to display a dialog for
building a list of parameters.

For a shader, input parameters appear in the parameter list for the shader.  For a group block, input
parameters appear as the inputs to the block to which other blocks may be linked.

Adding a Parameter

· Click Add to add a new parameter.

Each parameter requires a name, type, and default value.  The default value can be a constant, or, for
functions, a global variable.  Double-clicking a color value will display a color chooser dialog.
Optionally you can provide a help hint for the parameter.  Within a shader or group block each
parameter name must be unique.

Editing a Parameter

· Double-click a parameter to edit it.

Deleting a Parameter

· Select a row in the parameter list and click Delete to remove a parameter.

Changing Parameter Order



Building Shaders 6

©2004-2014 SiTex Graphics, Inc.

· Select a parameter and use the Up and Down buttons to change its order in the list.

Editing an Input Block

· To edit an input block, double-click in the block's title bar or select the block and choose Modify in
the Edit menu.

If you are within a group block that is connected to other blocks, you will not be able to edit its input
parameters.  To edit the input parameters for a group block, you must first break all connections to it by
closing the group block and removing any links.

Input Block Order

You can have multiple input blocks in a shader or group block.  The input parameters will appear in
order in each block, and the blocks will appear in the order in which they were created.  To change the
order of the input blocks, select the input blocks in the order in which you want the parameters to be
listed and choose Re-Order from the Edit menu.

3.1.2 Output Blocks

An output block defines the outputs from a group block or shader.

Creating an Output Block

· Click the Output button  or select New Output from the Blocks menu to display a dialog for
building a list of parameters.

Adding and editing output parameters works exactly like adding and editing input parameters.

3.1.3 Group Blocks

A group block is a container for a linked set of blocks that define a function.  Group blocks are useful
for creating new functions by combining blocks you already have.  Opening a group block for editing
reveals the enclosed blocks.  Group blocks can contain input blocks (identifying the values the block
expects to receive) and output blocks (identifying values the block exports), as well as function blocks
and other group blocks.

Creating a Group Block

· Click the Group Block button  or select New Group Block from the Blocks menu.
· Enter a name for the new block in the dialog that appears.

Vshade presents an empty page for constructing the group of blocks.  Add blocks to the group just as
you would to a shader.  You will need input blocks to define inputs to the group block, output blocks for
the results, and function or other group blocks to perform the computations.

Closing a Group Block

· When you are done creating the group, select Close from the Blocks menu or click the Up Level

button .

The screen will display the previous level of blocks in the shader, and the new block will appear as a



Vshade - The Shader Authoring Tool7

©2004-2014 SiTex Graphics, Inc.

group block in the center of the screen.  You can move, connect, and manipulate a group block just
like an SL Function block.

Editing a Group Block

· Double-click the title bar of a group block to re-open the block for editing or select the block and
choose Modify in the Edit menu.

If there are input or output links connected to the group block, you will not be able to add, to edit, or to
remove input or output blocks in the group.

3.1.4 Function Blocks

A function block is a primitive function defined by shading language code.  Function blocks are
provided for many common computational tasks.  You can easily add new functions.

Creating a Function Block

· Click the SL Function button  or choose New SL Function from the Blocks menu to bring up a
dialog for creating a function block.

Input and output parameters are created and manipulated just like parameters for an input block.
Output parameters do not need a default value.

Function blocks are implemented as short sections of shading language source code.  The source
code should use the input parameters (if any) to compute the output parameters or to set global
variables.

Almost any shading language function can be turned into a function block.  Keep the following pointers
in mind when constructing Function blocks:

1. Any global variables that are used must be declared using the extern keyword.
2. Every input parameter has a default value that is used if no link is connected to it.  The function

should produce a valid result for any combination of linked and default input values.
3. The code editor is fairly primitive.  If you are writing a complicated function, you may wish to use

an external editor and copy and paste the source code when it is finished.

Validating Function Blocks

When OK is clicked to close the dialog, Vshade tests to see if the function will compile.  If a compiler
error occurs, an error dialog will appear and the Code dialog window will not close.  To exit the dialog
box you must either correct the error or select Cancel.

3.1.5 Annotation Blocks

An annotation block is used to add notes to a shader.

Creating an Annotation Block

· Click the Annotation button  or select New Annotation from the Blocks menu to display the
annotation dialog.  Enter the note text and click OK.



Building Shaders 8

©2004-2014 SiTex Graphics, Inc.

3.1.6 Illuminate Block

An illuminate block is used inside a light shader to define illumination issued from a point.  There are
two types of illuminate blocks, one for point-like light sources and one for spotlights.  The two types of
illuminate blocks are contained in the shader templates for a point light and a spot light respectively.

An illuminate block is a special kind of group block.  You can add input and output parameters to an
illuminate block, but you should not rename it or remove any of the default parameters.

Within an illuminate block, the global variable L is set to the vector from the light source to the point
being shaded.  Add blocks within the illuminate block to set the global variable Cl - the color and
intensity of light emitted by the light source.

A light source should contain only one illuminate block or solar block.

3.1.7 Solar Block

A solar block is used within a light shader to define light emanating in a single direction.

A solar block is a special kind of group block.  You can add input and output parameters to a solar
block, but you should not rename it or remove any of the default parameters.

Within a solar block, the global variable L is set to the direction from which light is incident.  Add blocks
within the solar block to set the global variable Cl - the color and intensity of light emitted by the light
source.

A light source should contain only one illuminate block or solar block.

3.2 Common Block Operations

Selecting Blocks

There are several ways to select blocks:

· Click in the title bar of a block to select it.
· Drag a rectangle from left to right to select blocks enclosed by the rectangle.
· Drag a rectangle from right to left to select blocks contained in or crossed by the rectangle.

Hold down the shift key while making a selection to add to the current selection.

De-selecting Blocks

· Click in a blank area of the construction page to de-select all blocks.

Moving Blocks

· Click in a block title bar and drag with the mouse to move all selected blocks.

Editing Blocks

· To edit a block, double-click in the title bar, or select the block and choose Modify from the Edit
menu.

Cutting, Copying, Pasting, Deleting, and Renaming Blocks



Vshade - The Shader Authoring Tool9

©2004-2014 SiTex Graphics, Inc.

The standard editing operations of cut, copy, paste, delete and rename can be performed on any
selection of blocks.

Changing the Value of an Input Parameter

· Double-click on an unlinked input parameter to display a dialog for changing the default value.  If the
parameter is a color, you can double-click on the default value in the Edit Parameter dialog to display
a color chooser dialog.

Connecting Blocks

See Connecting Blocks.

3.3 Block Parameters

Parameter Types

Each parameter in Vshade has a type which determines the kind of information it stores.

Type Data Type Format
float real numbers a single number
color color data r g b components
point location data x y z

vector directional data x y z
normal orientation data x y z
matrix transformation 16 numbers

string string data text
integer whole numbers a single whole number
boolean true or false value true or false

Arrays

Parameters can also be arrays containing more than one element of any of the primitive types.

Default Values

Every input parameter must have a default value.  A default value is either a constant or a global
variable of the appropriate type.  The table below lists the global variables and their types:



Building Shaders 10

©2004-2014 SiTex Graphics, Inc.

Name Type Description
Cs color color attribute input
Os color opacity attribute input

P point surface position
dPdu vector X tangent vector
dPdv vector Y tangent vector
N normal surface normal at P

s float 1st texture coordinate
t float 2nd texture coordinate
u float 1st parametric coordinate
v float 2nd parametric coordinate

Ci color color output
Oi color opacity output
I vector incident ray

3.4 Connecting Blocks

Connecting Blocks

Information is passed from one block to another by forming connections between output and input
parameters.

· To connect an input parameter of one block to an output parameter of another, click on the name of
one of the variables (near the edge of the block), then on the name of the other variable.

Variables can only be connected if they are compatible.  Vshade will make sure that an input and an
output match before allowing you to make a connection.  Here are the rules for type compatibility:

Type Compatibility

1. Each variable type is compatible with itself.
2. A float variable may be used as the input to any color, point, vector, or normal variable.
3. Point, vector, and normal types are interchangable with one another.
4. If a variable is an array, it can only be connected to another array variable with the same number

of elements and the same element type.

Automatically Connecting Blocks

If you have multiple connections to make between two blocks, try using the Connect command in
the Edit menu.  The Connect function tries to form links between compatible variables of two
selected blocks.  If the resulting links are incorrect, select Undo from the Edit menu to undo the
connections.

Disconnecting Blocks

To remove a single connection, click on the link to highlight it, then press the delete key or select
Delete from the Edit menu.

To remove all connections from a group of selected blocks, use the Break Connections command
in the Edit menu or toolbar.



Vshade - The Shader Authoring Tool11

©2004-2014 SiTex Graphics, Inc.

3.5 Compiling and Previewing

A Visual shader must be compiled before being used.  The default output directory is the
usershaders directory of your AIR installaton.  The output directory can be changed using the
Output Directory item in the Run menu.

The Run menu contains items for compiling and previewing a shader.  There are also buttons for
commonly used items.

· The Preview item or button  invokes the shading compiler to compile the current shader and
then renders a preview image.  Use the items in the View tab to set the options for the preview
image, such as the scene file and the image size.

· The Compile Only item or button  simply compiles the shader.

Previewing in Air Show

If the Use Air Show item is checked in the Run menu, the preview image will be displayed in Air Show
instead of in Vshade.  When displayed in Air Show, the preview image may also include any output
variables in the shader if the Include Output Variables item is checked in the Run menu.

3.6 Interactive Parameter Tweaking

Vshade 3.0 and later support interactive parameter tweaking using SiTex Graphics' TweakAIR.

To start interactive tweaking, click the IPR button in the Vshade toolbar.  During an interactive session,
changes made to parameter values are sent to the TweakAIR rendering process which should update
the preview image very rapidly.

If you add parameters to a shader or modify the shader logic, you will need to re-start the interactive
session (by clicking the IPR button again) to see the changes reflected in the preview image.

3.7 Shader Documentation

Shader Information

Select Information in the File menu to display a dialog for entering information about the shader.  You
can provide a synopsis, author, copyright, and description.

Creating HTML Help

Vshade can automatically create an HTML help file containing information about a shader.

· Select Render Help Image from the File menu to render an thumbnail image for the help file.  The
image should be placed in the same directory as the help file.  Vshade will render a 128x128 preview
image using the current Run Time settings.

· Select Create HTML Help from the File menu to create an HTML help file for a shader using the
shader information and the hints for the input parameters.

The default location for the help file is $AIRHOME/shaders/html.  The shader description is place
directly in the help file and can include HTML formatting tags.



Building Shaders 12

©2004-2014 SiTex Graphics, Inc.

Creating an LIF file

Some plugins use LIF files to obtain additional information about a shader.  Chosing the Create LIF
File item in the File menu will create an LIF file for the current shader in the shader output directory.

3.8 Compiler Errors

Occasionally you may receive an error message when you attempt to compile a shader.

One common source of errors is when one more input or output parameters have the same name.
Each shader parameter must have a unique name.

Any other error will appear as an error message in a pop-up dialog.  This case indicates a problem with
Vshade or the shading compiler:  Vshade should not allow you to construct a shader that will not
compile.  Please send the VSL file to support@sitexgraphics.com so we can fix the problem.

3.9 Debugging a Shader

The Vshade interface prevents you from making simple programming errors.  Any shader you
construct should compile and work according to the shading network you have constructed.  Of course
what you see is not always what you expect.  Vshade provides a couple tools for finding out why an
errant shader is producing unexpected results.

Rendering a Link

Vshade allows you to render the value of any float, color, or point-type channel as a color applied to the

preview image.  To render a link, select it and click the Render Link button .  You cannot render
a link from within a group block.

If the preview image is displayed in Vshade, data values outside the range 0 to 1 will wrap around
when rendering a link.  If the preview image is rendered to Air Show, the data values are not wrapped,
and you can use the pixel view feature in Air Show to examine the data values at each pixel (just hold
down the SHIFT key while moving the mouse pointer over the image in Air Show).

3.10 Conditional Execution

When building complicated shaders, it is common to have shader components that only need to be
evaluated under certain conditions.

Execution of a group block can be made conditional on one of its inputs by providing an input variable
with a prefix of If_ or IfNot_.  The components in the group will only be executed if the If_ input is
non-zero (or not null for a string parameter).  If the components of a group block are not executed, any
output variables from the group block are assigned their default values.

3.11 Loops

Looping with a Group Block

Vshade 2 allows a Group block to be executed repeatedly in a loop.  Vshade looks for an input
parameter with a Loop_ prefix.  The input value for that variable is used as a loop counter and should
be an integer.  If the input value for Loop_X is N, the group block will be called N times with the
Loop_X variables taking on the values 0 to N-1.  Loop blocks are mainly useful in instancer and



Vshade - The Shader Authoring Tool13

©2004-2014 SiTex Graphics, Inc.

procedure shaders.

Looping with an Iterator

Vshade 5 introduces a new iterator block for simplified looping without using a group block.

You can create a simpler iterator by selecting the Iterator item from the Blocks menu.  Iterators are
used primarily when constructing instancer or procedure shaders.

An iterator block is simply a code block with the special name Iterator and at least one output
parameter.  The first output parameter, which should be a float, is used as the control variable for the
loop.  The first time the iterator is evaluated, the control variable will be set to 0.  The iterator should set
the control value to a non-zero value to execute the loop body.  The iterator should set the control
variable to 0 to terminate the loop.  Here's sample code for a simple loop that will execute 10 times:

if (Control==0) {
  Control =1
} else {
  Control+=1;
  if (Control>10) Control=0;
}

Any blocks connected to an output parameter of the iterator (either directly or via other blocks) will be
executed as part of the loop body.

4 Component Library

Vshade comes with a large library of pre-built components.  A component is simply a set of blocks that
have been saved together in a single file.  Most components contain a single block, but some contain a
linked set of related blocks.  Any set of blocks can be saved as a component.  The left-hand side of the
Vshade window has a tree list containing the components in the library.  Components are organized
into categories for convenience.

The library is stored in the directory $AIRHOME/viztools/vslib.  Each component is stored as a
separate file.  You can use standard file-manipulation tools such as Windows Explorer to change the
library.  If you alter the library file structure while Vshade is running, choose the Refresh item in the
Library menu to update the list of components in Vshade.

Viewing Components

To view the components in a category, click the  next to the category name.

Using Components

To use a component, select the component name in the library window.  Then click in the shader
contruction area to place a copy of the component.  The blocks in the component will appear selected.
Drag the title bar of any block to re-position the set.

User Library

Vshade provides a separate user component library where you can store your own components.  By
default the user component library is located in your home directory in SiTex\VshadeUserLib.  You
can change the location of the user library in the Library menu.  Categories in the user library are listed
at the top of the category list with the name enclosed in brackets.



Component Library 14

©2004-2014 SiTex Graphics, Inc.

Adding a Component to the Library

· Select the blocks you wish to include in the component.  Any set of blocks may be saved as a
component.  Links between selected blocks are saved with the component; links to unselected
blocks are not saved.

· Select the category in the user library list to which you wish to add the component.
· In the Library menu select Add Selection.
· Type a name for the component and press Enter.

Creating a New Category

· From the Library menu select New User Category and type a name for the new category.

Component Library Location

The standard component library can be relocated by moving the contents of
$AIRHOME\viztools\vslib to a new directory and defining a VSHADELIB environment variable to
point to the new directory.

4.1 Bump Layers

The Bump Layers category contains components that can be layered or blended together to produce
composite bump effects.

BumpBlend

Component for blending bump values using any of the supported blend modes

BumpMapLayer

Applies a texture map as a blended layer

Dents

Nicks



Vshade - The Shader Authoring Tool15

©2004-2014 SiTex Graphics, Inc.

4.2 Bumps

Components in the Bumps category are patterns for creating bump or displacement features using
either a displacement shader or a surface shader that supports bump mapping.

To make a simple displacement shader add any of the Bumps components to the Displacement
shader template.

Cells

Rounded lumps based on the Cells3D pattern in the Patterns 3D category.

Cracked

  Cracks based on the CellBorder pattern in the Patterns 3D category.

Dents

Dents based on Turbulence and a Power function.

Nicks



Component Library 16

©2004-2014 SiTex Graphics, Inc.

Nicks generated from a couple Noise functions.

Rough

Texture3DBump

TextureBump

The TextureBump component allows a texture map to be used to apply a bump pattern.

4.3 Color

The Color category holds components for manipulating colors.

Add

Adds colors

ColorFromRGB

Creates a color output from separate red, green, and blue input values

ColorRamp

Blends between two colors with Bias and Sharpness controls using a combination of Mix and
TweakRange components.

ColorToRGB

Converts a color input to separate red, green, and blue output values



Vshade - The Shader Authoring Tool17

©2004-2014 SiTex Graphics, Inc.

ColorTransform

Converts a color from one color space to another.

Combine

Adds two input colors with individual weights to produce an output color

Mix

Linearly blends between two colors based on an input float value

Multiply

Multiplies colors

Subtract

Subtracts colors

VaryColor

Provides separate inputs for varying the hue, saturation, or lightness of a color

VaryItemColor

Randomly varies the hue, saturation, and lightness of a color based on an item index value.  This
component can be used to give a slightly different color to each item in a discrete pattern like brick,
tile, or cells.

4.4 DarkTree

Components for using Darkling Simulations DarkTree shader in an AIR shader.  Windows only.

DarkTreeAll

Provides all the output values that can be produced by a DarkTree shader.

DarkTreeBump

Simplified DarkTree node providing only the bump elevation output.

DarkTreeColor

Simplified DarkTree node providing only the basic pattern color.

4.5 Float

The Float category holds basic arithmetic functions for float values.

Add

Adds numbers



Component Library 18

©2004-2014 SiTex Graphics, Inc.

Combine

Adds two input numbers with individual weights

Lerp

Linearly blends between two numbers based on an input float value

Multiply

Multiplies numbers

Subtract

Subtracts numbers

4.6 Functions 1D

The Functions 1D category contains a collection of standard mathematical functions.

Abs

absolute value

Ceil

smallest integer greater than or equal to X

Clamp

clamps the input to value to lie within the given interval

Exp

e raised to input power

Floor

largest integer less than or equal to X

Log

natural logarithm

Max

maximum of two values

Min

minimum of two values

Mod



Vshade - The Shader Authoring Tool19

©2004-2014 SiTex Graphics, Inc.

Modulus function

Power

raises a number to any power

Round

the nearest integer to X

Sign

returns -1 if X is less than 0, 0 if X is 0, and 1 if X is greater than 0

Sqrt

the square root of X

4.7 Functions 2D

Functions for manipulating 2D coordinates:

Add2D

Adds a pair of 2D  coordinates

Distance2D

Distance between two 2D points

Length2D

Length of a 2D vector

Multiply2D

Multiplies a pair of 2D vectors

Rotate2D

Rotates a 2D point

Subtract2D

Subtracts a pair of 2D points

XYfromPolar

Converts a coordinate pair from polar to rectilinear coordinates

XYtoPolar

Converts a coodinate pair from rectilinear to polar coordinates



Component Library 20

©2004-2014 SiTex Graphics, Inc.

4.8 Functions 3D

Functions for point, normal, and vector types.

AngleBlend

Emits a float value based on the angle between two input vectors, optionally raised to a power

CrossProduct

Computes the cross product of two vectors

Distance3D

Outputs the distance between two points

DotProduct

Returns the dot product of two vectors

FaceForward

Flips the input normal if necessary to face towards the incoming direction

Length3D

Returns the length of a vector

Normalize

Normalizes the input vector

Rotate3D

Rotates the input point about an axis

4.9 Globals

Globals components provide read and write access to global variables available to shaders.

Read Components

ColorIn Cs primitive Color attribute

ColorOut Ci output color

OpacityIn Os primitive Opacity attribute

OpacityOut Oi output opacity

Normal N surface normal

IncomingDir I incident ray from view direction

Position P surface location

TextureCoords s t standard surface texture coordinates

Write Components



Vshade - The Shader Authoring Tool21

©2004-2014 SiTex Graphics, Inc.

SetColor Ci output color

SetOpacity Oi output opacity

SetPosition P surface location

4.10 Layers

Components that can be layered and combined with other shading patterns and each other to produce
composite effects:

Blend

General component for blending two colors using any supported blend mode.

CloudLayer

Cloud pattern from a Brownian noise function

ColorLayer

Simple layer for blending a color

Decal2D

Applies a decal using standard texture coordinates on top of an underlying color or color pattern.

Decal3D

Applies a projected decal on top of an underlying color or color pattern.

StencilLayer

Applies a texture map as a colored stencil with selectable blend mode

TextureLayer

Adds a a texture map layer.  The texture map is positioned using the object's standard texture
coordinates.

4.11 Lighting Models

This category hold components for various illumination models that determine how a given surface
responds to light.  You can make a simple surface shader by creating a new shader using the standard
Surface template and adding any illumination model.

All lighting models provide extra output variables to support multipass rendering.

AddBump

The AddBump component can be used to add bump mapping to any LightingModel component:
after adding the component, connect the Normal output to the Normal input of an LightingModel
component.  Connect the bump pattern to the Bump input of the BumpMap block.  See the tutorial
A Surface Shader with Bumps for more details.



Component Library 22

©2004-2014 SiTex Graphics, Inc.

BrushedMetal

  A metallic surface with fine grooves that make the specular highlight dependent on the
orientation of the surface.

Clay

  A rough surface without highlights using the DiffuseRough component from the
LightingPrimitives category.

Glass

  Basic glass component for refractive materials

Matte

  Standard matte illumination model with Diffuse

Plastic

  A plastic surface without reflections using the standard Specular function.

ShinyCeramic

  A glossy surface with reflections.

ShinyMetal

  A metallic surface with reflections.  The reflections and specular highlight are both
modulated by the base surface color.

ShinyPlastic



Vshade - The Shader Authoring Tool23

©2004-2014 SiTex Graphics, Inc.

  A plastic surface with reflections that are more visible at glancing angles.

Velvet

  Simple velvet surface.

4.12 Lighting Primitives

These components implement primitive local illumination models.  Combinations of primitive
illumination models can be used to construct different surface appearances, such as the components
in the LightingModels category.

Ambient

Returns the ambient lighting component

Diffuse

  standard Lambertian diffuse

DiffuseRough

  diffuse reflectance for rough surfaces like clay

Specular

  standard function for specular highlights

SpecularBlinn

  alternate specular function due to Blinn

SpecularBrushed



Component Library 24

©2004-2014 SiTex Graphics, Inc.

  specular for a surface with orientation-depended roughness like brushed metal

SpecularGlossy

  specular for a glossy surface with control of the sharpness of the highlight edge

4.13 Materials

Material components contain a complete color pattern and sometimes a bump pattern.  Use these as
building blocks for simple surface shaders by creating a new shader with any surface template and
adding a material.  Materials can also be combined with other blocks to produce more complicated
shaders.

Brick

  Colored brick based on the BrickPattern component in Patterns 2D

Granite

  Granite made from the Turbulence component in Noise

Marble

  Colored marble from the MarbleVeins component in Patterns 3D

Texture3D

  Texture pattern using standard texture coordinates or a projection

TextureMap



Vshade - The Shader Authoring Tool25

©2004-2014 SiTex Graphics, Inc.

  Texture pattern using standard texture coordinates

Tile

  Colored tile based on the TilePattern component in Patterns 2D

Wood

  Wood from the WoodRings component in Patterns 3D

4.14 Noise

Noise components provide stable pseudo-random numbers tied to particular input.

CellNoise

CellNoise returns a random number associated with the integer portion of the input coordinates.  The
output value is scaled to lie between the Zero and One inputs.

Brownian

Computes a function known as fractional Brownian motion by summing several octaves of noise at
different frequencies.  The frequency of each sample increases by the Lacunarity parameter for each
octave, while its contribution to the total sum decreases based on the Gain parameter.  The output
value is scaled to lie between the Zero and One inputs.

Noise



Component Library 26

©2004-2014 SiTex Graphics, Inc.

The Noise component returns a 1-dimensional noise function.  The output value is scaled to lie
between the Zero and One inputs.

NoiseXY

The NoiseXY component returns a 2-dimensional noise function.  The output value is scaled to lie
between the Zero and One inputs.

NoiseXYZ

The NoiseXYZ component returns a 3-dimensional noise function.  The output value is scaled to lie
between the Zero and One inputs.

Turbulence

Turbulence computes a function that approximates turbulent fluid flow by summing octaves of a
modified noise function.  The frequency of each sample increases by the Lacunarity parameter for
each octave, while its contribution to the total sum decreases based on the Gain parameter.

4.15 Patterns 1D

Patterns based on a single input signal.

PulseTrain



Vshade - The Shader Authoring Tool27

©2004-2014 SiTex Graphics, Inc.

SawToothWave

SmoothPulseTrain

4.16 Patterns 2D

2-dimensional patterns.

BrickPattern

Cells2D

Gradient

HexPattern



Component Library 28

©2004-2014 SiTex Graphics, Inc.

PlankPattern

Spots2D

TilePattern

Weave

4.17 Patterns 3D

3-dimensional patterns.

CellBorder



Vshade - The Shader Authoring Tool29

©2004-2014 SiTex Graphics, Inc.

Computes the border between cells in a Voronoi-diagram-like pattern.

Cells3D

Cells3D returns the distance to the center of the nearest 3D unit cell as well as the center.  The
picture on the right shows the effect of using CellNoise to generate a unique value based on the
nearest cell center.

MarbleVeins

Simple marble pattern created with Turbulence.

Spots3D

Spot pattern from a Cells3D component and a Step component.

WoodRings

Wood ring pattern.



Component Library 30

©2004-2014 SiTex Graphics, Inc.

4.18 Point

The Point category contains components for basic arithmetic operations on point, vector, and normal
values.

Add

Adds two points or vectors

Combine

Adds two input points with individual weights to produce an output point

Divide

Divides one vector by another

Multiply

Multiplies points or vectors

PointFromXYZ

Creates a point from individual X, Y, and Z inputs

PointToXYZ

Outputs the individual X, Y, and Z components of a point

Subtract

Subtracts vectors and points

4.19 Query

Use the components in this category to query attributes, options, or dictionary entries.

AttributeColor
AttributeFloat
AttributeString

The Attribute components return the value of the named attribute if found or the specified default
value otherwise.

DictionaryColor
DictionaryFloat
DictionaryString

The Dictionary blocks return the value of an entry in the specified dictionary file if it is found and the
default value otherwise.  A dictionary is organized as a simple text file of name value pairs, one entry
per line.

OptionColor
OptionFloat
OptionString



Vshade - The Shader Authoring Tool31

©2004-2014 SiTex Graphics, Inc.

The Option components return the value of the named option if found or the specified default value
otherwise.  For a list of currently supported options see the documentation for the option() function in
the Air User Manual under

Shader Guide -> Shading Language Extensions -> option()

4.20 Reflections

Components for computing reflections.

BrushedReflections

Component for anisotropic or brushed reflections.

Environment Map

Provides a simple environment map lookup.

Reflections

This component combines ray tracing and environment-mapped reflections.  If ReflectionName is
"raytrace", ray tracing is used for reflections; otherwise ReflectionName is assumed to hold the
name of an environment map.  If the Reflection parameter is 0, no reflections are computed.

Trace

Simple encapsulation of the shading language trace() function.

4.21 RIB

Components in this directory issue RIB commands using the new ribprintf() statement in AIR 8.  These
components can only be used in a procedure or instancer shader.

The order in which RIB components are evaluated in the shader - and hence the order in which RIB
commands are issued - is important.  To provide a well-defined order, each RIB component has an
Enable input parameter and a Next output parameter.  Connecting the Next output from one
component to the Enable input of a second component ensures that the first component is executed
before the second component.  For example, in the network below the Color block would be evaluated
before the Sphere block:



Component Library 32

©2004-2014 SiTex Graphics, Inc.

Each component disables it's output if the Enable input is 0.  This behavior allows a sequence of linked
RIB blocks to be turned on or off using the Enable component of the first block.

4.22 Shapes 2D

2D shape patterns with anti-aliasing

Disk

Line2D

Polygon

Rectangle

Ring

Star

SuperEllipse



Vshade - The Shader Authoring Tool33

©2004-2014 SiTex Graphics, Inc.

4.23 Texture

Components for texture mapping.

ProjectDecal

Component for projecting a decal onto a surface.  DecalSpace gives the coordinate space in which
to perform the projection by applying the DecalTransform transformation.  The FrontOnly parameter
can be used to restrict the decal to one side of a surface.

Texture

Component for querying a texture map with parameters for scaling and translating the input texture
coordinates.

Texture3D

Texture mapping component that uses the Project2D component to allow a choice of standard
texture coordinate mapping or a number of 3D to 2D projections.

4.24 Transformations

Components performing 3D transformations.

Project2D

Outputs a pair of texture coordinates based on standard texture coordinates or any of various
3D to 2D projections.

ShadingPosition

This component converts the input surface location to a stable coordinate space suitable for shading
such as "shader", "world", or "object" space.  Use this component to generate the input point
for a 3D pattern.

TransformNormal

Transforms a normal from one coordinate space to another.

TransformPoint

Transforms a point from one coordinate space to another.

TransformVector

Transforms a vector from one coordinate space to another.



Component Library 34

©2004-2014 SiTex Graphics, Inc.

4.25 Transitions

Components for modifying a single input signal.

Invert

Inverts the input signal between Min and Max

Pulse

Returns 1 when the signal is between Start and End and 0 elsewhere.

SmoothPulse

starts at 0, rises smoothly to 1 between RiseStart and RiseEnd, stays at 1 until FallStart, and then
falls smoothly to 0 at FallEnd.

SmoothStep

Returns 0 when the signal is less than RiseStart, 1 when the signal is greater than RiseEnd, and
smoothly blends between 0 and 1 for values between RiseStart and RiseEnd.

Step

Simple step function that returns 0 when the signal is less than Edge and 1 when the signal is above
it.

TweakBump

Component for tweaking the appearance of bump mapping or displacement.

TweakRange

Function for modifying the domain and range of a signal as well as controlling the contrast
(sharpness) and applying bias.  See the related tutorial for more information.

4.26 Trigonometry

Standard trigonometric functions.

Sin, Cos, and Tan components all accept input in degrees, radians or cycles.

Similarly, the ArcSin, ArcCos, and ArcTan components return results in degrees, radians, and cycles.

5 Tutorials

1. A First Surface Shader
2. A First Displacement Shader
3. A Surface Shader with Bumps
4. A Surface Shader with Texture Maps
5. Discrete Color Patterns:  Simple Brick

6. Continuous Color Patterns:  Simple Marble
7. 3D to 2D Projections



Vshade - The Shader Authoring Tool35

©2004-2014 SiTex Graphics, Inc.

8. Reflections with Angle Blend
9. A Rippled Displacement Shader
10.  A Wood Shader with Decals

5.1 A First Surface Shader

This tutorial shows you how easy it is to make a simple surface shader based on the templates and
materials included with Vshade.

· Start Vshade.

Introduction to the User Interface

The Vshade window looks like this:

There is a toolbar along the top with buttons for common operations.  If you hold the mouse pointer
over a button, a hint will appear with the name of the button's function.  There are equivalent menu
items for all buttons.

In the upper left-hand corner is a blank square where a preview of the shader can be displayed.

Below the preview area is the library of blocks used to build shaders.  The library is divided into
categories.  To view the blocks in a category, click on the  to expand it.



Tutorials 36

©2004-2014 SiTex Graphics, Inc.

The large area in the lower right is the shader construction area where you will build a shader.

Vshade automatically loads a shader template when it starts.  This template is for a simple surface
shader with a plastic illumination model.  We could use this template to build our shader, but we will
instead use a different template so we can learn how to start a new shader.

· In the File menu select New or click on the New button in the toolbar.

A dialog box will appear with a list of templates for common types of shaders.

· Scroll down and select the Surface_ShinyPlastic template.  Click OK.

Vshade will open a new window using the selected template to begin a new shader.  This template is
for a surface shader with reflections.  The template is a complete shader in itself.

· To see what the unmodified template shader looks like, click the Render button .  A file dialog
will appear prompting you to first save the shader.  Save the shader as shinygranite.vsl in a
convenient directory.

After a few seconds a picture of a sphere with our new shader should appear in the preview section of
the main Vshade window.  The sphere has a plastic illumination model and reflections.

Now we will turn this into a granite shader by adding a block from the Materials category in the library.

· In the library section of the Vshade window expand the Materials category by clicking on the  next
to it.

· Select Granite in the Materials category.
· Click in the middle of the shader construction area to position the Granite block so that you can

connect its Color output to the BaseColor input of the ShinyPlastic block.  As long as the blocks are
selected, you can click and drag in a block title bar to move the selected blocks.

· Click on the BaseColor input to the ShinyPlastic block near the block edge, then on the Color output
from the Granite block near its edge to connect to the two blocks:



Vshade - The Shader Authoring Tool37

©2004-2014 SiTex Graphics, Inc.

· Click the render button again to see the updated shader with a granite pattern.

You can produce other effects by connecting the Color or InVein outputs from the Granite block to the
SpecularColor and InOpacity inputs to the ShinyPlastic block.

That's all there is to making a simple surface shader.  Try using other Surface templates and materials
in the Materials category to make other interesting shaders.

5.2 A First Displacement Shader

This brief tutorial shows how to make a simple displacement shader using the Displacement
template and the blocks in the Bumps category.

· Start Vshade if it is not already running and select New from the File menu.
· Select the Displacement template to start a displacement shader.

· In the library section open the Bumps category and select the Cells block.
· Click in the shader construction area and position the Cells block so that you can connect the Bump

output from the Cells block to the Bump input of the DisplaceN block.

· Click on the Bump input to the DisplaceN block near the edge, then on the Bump output for the
Cells block near the edge to connect the two blocks.

· Click the Save button and save the shader as cellbumps.vsl in a convenient directory.

· Click the Render button to see a preview of the shader.

This same procedure can be used to build a displacement shader from any of the blocks in the Bumps
category.  The blocks in the Patterns 1D, Patterns 2D, and Patterns 3D categories can also easily be
used for displacement.



Tutorials 38

©2004-2014 SiTex Graphics, Inc.

5.3 A Surface Shader with Bumps

Vshade includes many surface templates to get you started, but sooner or later you'll need to build a
shader that isn't based on one of the templates.  This tutorial shows how to build a surface shader
using one of the illumination models provided with Vshade and how to add bump mapping to any
surface shader.

· In Vshade select New from the File menu and choose Surface as the template to load.  This loads
a blank surface shader.

· Click the Save button and save the shader as GlossyCells.vsl in a convenient location.

· In the component library window expand the Lighting Models category and select the
ShinyCeramic component.

· Click in the shader construction area and place the ShinyCeramic component as illustrated:

Next, we'll connect the color and opacity outputs from the ShinyCeramic block to the blocks that set
the opacity and color for the surface shader.

· Connect the Color output from the ShinyCeramic block to the Color input of the SetColor block.
· Connect the Opacity output from the ShinyCeramic block to the Opacity input of the SetOpacity

block.
· Click the Render button  to see the basic shiny ceramic shader.

Now we'll add some cells to the shader.

· Select the AddBump component in the Lighting Models category.
· Place the AddBump component just to the right of the Normal input to the ShinyCeramic block.



Vshade - The Shader Authoring Tool39

©2004-2014 SiTex Graphics, Inc.

· Connect the Normal output from the BumpMap block to the Normal input to the ShinyCeramic
block.  Now the ShinyCeramic block will use the bump-mapped normal for its shading calculations.

FInally, we need to add a cells pattern to use as the bump map.

· Expand the Bumps category and select the Cells component.
· Place the Cells component to the right and below the BumpMap block.

· Connect the Bump output from the Cells block to the Bump input of the BumpMap block.
· Click the Render button to see the final shader.

You can use this same procedure to combine any of the illumination models provided with Vshade with
any of the Bump patterns to form new shaders.

5.4 A Surface Shader with Texture Maps

Texture maps are a common means of adding pattern and variation to an object.  With AIR's
programmable shaders texture maps can be used to control almost any aspect of a surface's
appearance.  This tutorial shows how to build a surface shader with texture maps.

· Start Vshade.
· Click the New button to begin a new shader and choose the Surface_Plastic  template.
· Click the Save button and save the shader as MyTexturedPlastic.vsl in a convenient directory.

· Click the Render button to see a preview of the base shader.  You should see a shiny blue sphere.

Texture Map for Base Color

We will now add a texture map to control the base object color.

· In the component library open the Materials category and select the TextureMap component.
· Place the TextureMap component in the shader construction area and position it to right and slightly

below the Plastic block.



Tutorials 40

©2004-2014 SiTex Graphics, Inc.

· Connect the Color output of the TextureMap block to the BaseColor input of the Plastic block.
· Render a preview image again to see the new shader.

The formerly blue sphere now appears white.  Here's what happened:  by default the BaseColor is
taken from the object's color attribute, which is set to blue by default in Vshade.  After we connected
the TextureMap block, the BaseColor came from the texture map.  Since we specified no texture map,
the TextureMap block returns the Fill value, which is 1, producing white.

If no texture is provided, we would like the shader to have the same appearance it had before the
TextureMap block was attached.  We can accomplish this by multiplying the Color output of the
TextureMap block by the object's color value.

· Open the Globals category in the component library and select the ColorIn component.
· Place a ColorIn component above the TextureMap block in the shader construction area.
· Open the Color category and select the Multiply block.
· Place a Multiply block to the left of the TextureMap block.
· Connect the Multiply block as depicted in the following snapshot:

· Render the preview image again.  You should once again see a blue sphere.

· To see what the shader looks like with a texture map, double-click the TextureName input parameter
to display the Edit Parameter dialog.



Vshade - The Shader Authoring Tool41

©2004-2014 SiTex Graphics, Inc.

· Change the Value to grid.tx.  (grid.tx is a texture map included with AIR).

· Render a preview again to see the texture-mapped sphere.

· Note that it has a blue-ish tinge.  That's because the texture map result is multiplied by the blue
object color.  To remove the blue tint, select Settings in the Run menu to display the Preview
Settings dialog.  Change the Color value to 1 1 1 (white).  Close the dialog and re-render.

Texture Map for Specular

Now we will add an additional texture map that controls the specular color.

We will need a little more room near the Plastic block, so move the Multiply, InColor, TextureMap,
and TextureParms blocks a couple inches to the right and down.  (Tip:  You can easily select all 4
blocks at once by dragging a rectangle from right to left that touches or encloses all 4 blocks.)

· In the Materials category select the TextureMap component.
· Place a new TextureMap component above the InColor block.  Your shader should look something

like this:

· Connect the Color output from the new TextureMap block to the SpecularColor input to the Plastic
block.

· Click the Render button.

Vshade displays a warning message that there is a duplicate parameter in the shader: TextureName.
Every shader parameter must have a unique name.  Vshade provides an easy means of renaming all
the parameters in an input or output block.

· Select the top TextureParms block (the one connected to the TextureMap block connected to
SpecularColor).

· In the Edit menu select Prefix.  This allows us to change the prefix assigned to these parameters



Tutorials 42

©2004-2014 SiTex Graphics, Inc.

from Texture to something else.  Change the prefix to Specular and click OK.

· Now select the other TextureParms block.  Choose Prefix in the Edit menu and change this prefix
to Color.  Click OK.

· Click the Render button to preview the shader.

· To see the effect of a specular map, double-click the SpecularName parameter and set its value to
grid.tx.

· Render the preview again to see the preview image with a specular map.

Using these same techniques you can add texture maps to control almost any aspect of a surface
appearance.  E.g., you could add another map to control the opacity.  For templates that support bump
mapping, another map can be used for the bump value.

5.5 Discrete Color Patterns: Simple Brick

Vshade contains many components that generate patterns as floating-point values that vary between 0
and 1.  Those patterns can be used with the color Mix component to make simple color patterns. This
tutorial shows how to make a simple colored brick and mortar pattern and how to vary the color of each
brick.

· Start a new shader and select the Surface_Matte template.
· Click the Save button and save the shader as SimpleBrick.vsl in a convenient directory.

· Open the Color category in the component library and select the Mix component.
· Place the Mix component to the right of the Matte block.
· Connect the Mix output to the BaseColor input of the Matte block.
· Open the Patterns 2D component category and select the BrickPattern component.
· Place the BrickPattern component to the right and below the Mix block.
· Connect the InBrick output of the BrickPattern block to the Fraction input of the MixColors block.

· Click the Render button to view the shader.

The MixColors block blends between two colors based on the Fraction input value.  For the simple
brick pattern, we will use the surface color attribute for the brick color and provide a shader parameter
for the mortar color.

· In the Globals category select the ColorIn block.
· Place the ColorIn block to the right of the MixColors blocks.
· Connect the ColorIn output to the Color1 input of the MixColors blocks.

· In the Blocks menu select New Input or click the New Input button in the toolbar.
· In the Input Parameters dialag click Add to add a new parameter.
· Set the parameter Name to MortarColor



Vshade - The Shader Authoring Tool43

©2004-2014 SiTex Graphics, Inc.

· Set the Type to color.
· Set the default Value to 0.3 0.3 0.3

· Click OK to close the Add dialog.
· Click OK to close the Input Parameters dialog.
· Move the new parameter block so it is above the ColorIn block.
· Connect the MortarColor output from the Parameters block to the Color0 input of the MixColors

block.

· Render a preview to see the new shader.

The bricks are colored blue (based on the color attribute), and the mortar is grey.

Varying Brick Color

We can make the pattern more interesting by varying the color of each brick.

· We will need some more space between the BrickPattern block and the MixColors block.  Move
the BrickParms and BrickPatterns blocks about 2 inches or 4 centimeters to the right.

· In the Color category select the VaryItemColor component.
· Place the VaryItemColor component between the MixColors block and the BrickPattern block.



Tutorials 44

©2004-2014 SiTex Graphics, Inc.

· Connect the OutColor parameter of the VaryItemColor block to the Color1 input of the MixColors
block.

· Connect the BrickColumn output of the BrickPattern block to the X input of the VaryItemColor
block.

· Connect the BrickRow output of the BrickPattern block to the Y input of the VaryItemColor block.
· By default the VaryItemColor block takes its color input from the surface color attribute, so we don't

need the InColor block anymore.  Select it and delete it.

The VaryItemColor block varies its input color randomly based on the X, Y, and XYZ item indices.
Vshade blocks that produce patterns of discrete elements like bricks, tiles, or cells provide output
parameters identifying the particular element being shaded that can be used to vary shading values for
each item.  In this case we use the brick row and column to vary the brick color.

· Double click the VaryLight parameter of the VaryItemColor block and change its value to 0.1
· Render a preview.

Each brick now has a slightly different color.  Try experimenting with the VaryHue and VarySat
parameters to see their effect.  You may wish to create shader parameters to allow the color variation
to be set by a user.

5.6 Continuous Color Patterns:  Simple Marble

This tutorial shows how to use continous function or pattern to make a colored pattern and how to
tweak the blending between colors.

· Start a new shader and select the Surface_Plastic template.
· Save the shader as SimpleMarble.vsl in a convenient directory.

· In the Color category select the Mix component.
· Place the Mix component to the right of the Plastic block.
· Connect the Mix output to the BaseColor input of the Plastic block.
· In the Patterns 3D category select the MarbleVeins component.
· Position the MarbleVeins component to the right of the MixColors block.
· Connect the InMarble output from the Marble block to the Fraction input of the MixColors block.
· Select the ShadingPosition component in the Transformations category.
· Place the ShadingPosition component to the right of the Marble block.
· Connect the ToP output from the TransformPoint block to the Position input of the Marble block.
· Click the Render button to render a preview image.

We have a simple marble shader that mixes between black and white.  Next we add user control over
the colors.  We'll use the surface color attribute for the base color and create a shader parameter for
the vein color.

· In the Globals category select the ColorIn component.
· Place the ColorIn component above the Marble block.
· Connect the ColorIn output to the Color1 input of the MixColors block.
· To create an input block for the remaining color parameter, select the MixColors block and choose

Block for Inputs from the Blocks menu.
· Double-click the title bar of the new input block and edit the parameter to change it's name to
VeinColor.  Close the dialog.

· Render a new preview.

Users can now set the marble and vein colors.  We can provide users more control over the transition
between the two using the TweakRange component.



Vshade - The Shader Authoring Tool45

©2004-2014 SiTex Graphics, Inc.

· To make room for the new component, move the Marble, TransformPoint, and ShadingParms
blocks about 2 inches or 4 centimeters to the right.

· In the Transitions category select the TweakRange component.
· Place the TweakRange component between the Marble block and the MixColors block.
· Connect the Out parameter of the TweakRange component to the Fraction input of the MixColors

block.
· Connect the InMarble output from the Marble block to the In input of the TweakRange block.

· In the Run menu select Settings... and change the preview scene to Square to better observe the
effects of modifying the marble output.

· Render a preview image to see the shader without modifications.

The TweakRange block has two basic parameters for modifying the input range - Sharpness and Bias.
The Bias parameter can be used to shift the source signal towards the higher or lower end of the
output range.

· Double-click the Bias parameter of the TweakRange block and change its value to 0.8
Preview the shader.

Increasing bias shifts the source signal towards the high end of the range, making the veins narrower.

· Change the Bias to 0.2 and render again.



Tutorials 46

©2004-2014 SiTex Graphics, Inc.

A bias less than 0.5 moves values towards the low end of the range, making the veins wider.

· Set the Bias back to the middle value 0.5 (no bias).
· Double-click the Sharpness parameter and set its Value to 0.7
· Preview the shader.

A higher Sharpness makes the transition between regions sharper.

· Change the Sharpness parameter to 0.3 and render the shader.

A Sharpness below 0.5 softens the transition between colors.

You can use the TweakRange block to modify any continuous function.

5.7 3D to 2D Projections

Every primitive has a default set of 2D texture coordinates that can be used to apply a 2D pattern to a
surface.  However, sometimes one wants to apply a 2D pattern that can't easily be fit onto the standard
texture coordinates.  A useful alternative is to generate 2D coordinates by converting or projecting a 3D
point.  Vshade provides an easy method of selecting various projections of a 3D point to use as 2D
texture coordinates.  This quick tutorial looks at the various projections and how to use them.

· Start a new shader and select the Surface_Matte template.
· Click the Save button and save the shader as ProjectionTest.vsl in a convenient directory.

· In the Patterns 2D category select the TilePattern component.
· Click in the shader construction area and place the TilePattern component just to the right of the



Vshade - The Shader Authoring Tool47

©2004-2014 SiTex Graphics, Inc.

Matte block.
· Connect the InTile output from the TilePattern block to the BaseColor input of the Matte block.

The X and Y texture coordinate inputs to the TilePattern block default to the standard texture
coordinates s and t.

· Render a shader preview to see the tile pattern with default texture coordinates.

· In the Transformations category select the Project2D component.
· Place the Project2D component just to the right and below the TilePattern block.
· Connect the X output of the Project2D block to the X input of the TilePattern block.
· Connect the Y output of the Project2D block to the Y input of the TilePattern block.

Now the TilePattern block will use the texture coordinates generated by the Project2D block.  The
Project2D block can perform five different 3D to 2D projections.  We will look at them all.

"st" Projection

The default projection type is "st", which just uses the standard 2D texture coordinates.  If you render
a preview of the updated shader, you will see the same image as the shader w/o the Project2D block.
The "st" projection lets you easily offer users the choice of utilizing standard texture coordinates as
well as any of the following 3D to 2D projection types.

"planar" Projection

· Double-click the Projection parameter of the ProjectionParms block and change its Value to
"planar".

· Preview the shader.



Tutorials 48

©2004-2014 SiTex Graphics, Inc.

The planar projection uses the x and y components of the 3D point.  Planar projections are useful for
uniformly texturing fairly flat surfaces that may be constructed from multiple primitives.

"spherical" Projection

· Double-click the Projection parameter of the ProjectionParms block and change its Value to
"spherical".

· Preview the shader.

The spherical projection projects the position onto a unit sphere centered at the origin and takes the X
and Y coordinates from the latitude and longitude of the sphere.

"cylindrical" Projection

· Change the Projection parameter of the ProjectionParms block to "cylindrical" and preview
the shader.

The cylindrical projection projects the point onto a cylinder around the Z-axis.  A cylindrical projection is
useful for texturing objects generated from a surface of revolution or similar to one.

"box" Projection

· Change the Projection parameter of the ProjectionParms block to "box" and preview the shader.



Vshade - The Shader Authoring Tool49

©2004-2014 SiTex Graphics, Inc.

The box projection projects the point onto the XY, YZ, or XZ plane depending on the dominant axis of
the surface normal. A box projection is useful for texturing an object made of several orthogonal
surfaces such as building.

· In the Run menu select Settings and change the preview file to Box.

· Re-render to see the box projection applied to a box.

5.8 Reflections with Angle Blend

This tutorial shows how to add reflections to the standard plastic shader using the AngleBlend
component.  This provides an alternative shiny plastic shader to the one included with Vshade.
Plastics have the property that they are more reflective at glancing angle than when seen headon.  The
shiny plastic shader included with Vshade uses a fresnel function that is based on real-world physics to
control the falloff of reflections.  The AngleBlend block computes a function simply based on the angle
between the surface normal and the incident viewing direction.

· Start a new shader by clicking the New button and selecting the Surface_Plastic template.
· Click the Save button and save the shader as ShinyPlasticFalloff.vsl in a convenient

directory.
· We will need some space between the Plastic blocks and the output parameters.  Select the Plastic

and PlasticParms blocks by dragging a rectangle from right to left that crosses both.  Then click in
the title bar of one of the blocks and move both to the right about 2 inches.

· Open the Reflections category in the library and select the Reflections component.  Click in the
shader construction area and place a Reflections component below the Plastic block.



Tutorials 50

©2004-2014 SiTex Graphics, Inc.

· Open the PointFunctions category in the component library and select the AngleBlend component.
Place the component underneath the Reflections block in the shader construction area.

We want to multiply the reflected color by the Edge output from the AngleBlend block and add the
result to the output color for the shader.

· Open the Color category and select the Multiply component.  Place a Multiply block next to the
Reflections block.  Connect the Color output from the Reflections block to the top input to the
Multiply block.  Connect the Edge output from the AngleBlend block to the second input to the
Multiply block.

· In the Color category of the library select the Add component.  Place the Add component to the left
and above the Multiply component.  Connect the output from the Multiply component to one input



Vshade - The Shader Authoring Tool51

©2004-2014 SiTex Graphics, Inc.

of the Add component, and connect the Color output from the Plastic block to the other Add input.
Finally connect the Add output to the SetColor input.

· Click the Render button  to see the shader with reflections.

Adding a shader parameter that controls the exponent to the AngleBlend function will allow a user to
control the extent to which reflections are affected by the viewing angle.

· Click the New Input block button  in the toolbar to create a new block for input parameters to
the shader.

· In the Input Parameters dialog click the Add button to add a new parameter.
· Name the parameter ReflectionFalloff
· In the Help field type falloff of reflection with angle

· Leave the type as float.  Change the default value to 2.
· Click OK to close the Add Parameter dialog, then click OK again to close the Input Parameters

dialog.
· Position the new Parameters block to the right of the AngleBlend block.
· Connect the ReflectionFalloff parameter to the Exponent input of the AngleBlend block.



Tutorials 52

©2004-2014 SiTex Graphics, Inc.

· Try rendering the shader with different values of ReflectionFalloff to see its effect.  You can display a
dialog for changing the ReflectionFalloff value by double-clicking the parameter name near the block
edge.

5.9 A Rippled Displacement Shader

This tutorial shows how to build a displacement shader based on a 3D pattern.  In this case we will use
a noise pattern called Brownian that simulates the effects of pseudo-random motion.  Here's what the
Brownian pattern looks like:

We'll use this to produce a ripple-like appearance.

· Click the New button and select the Displacement template.
· Click the Save button and save the new shader as MyRipples.vsl in a convenient directory.

Brownian computes a pattern based on a 3D point.  Now, we can't just use the input position for that
point, because that point is in "current" space which will change, for example, if the camera position
changes.  Instead, we want to convert the surface location to a stable coordinate space such as the
"shader" space in which the displacement shader is declared.  For stable 3D patterns, remember to
always use the ShadingPosition component in the Transformations category as the starting point for
a 3D pattern.

· Expand the Noise category and select the Brownian component.
· Place the Brownian component in the shader below the DisplaceParms block.
· Connect the fbm output from the Brownian block to the Bump input of the DisplaceN block.
· Expand the Transformations category and select the ShadingPosition block.
· Place a ShadingPosition component to the right of the Brownian block.
· Connect the ToP output from the TransformPoint block to the Position input to the Brownian block.

The shader should look approximately like this:



Vshade - The Shader Authoring Tool53

©2004-2014 SiTex Graphics, Inc.

· Click the Render button to see the shader.

Notice the sharp contrast in the bump features.  We would like a subtler effect.

· Double-click the Bump parameter in the DisplaceParms block and change its Value to 0.1
· Render again to see the more subtle effect.

We might like to give users more control over the shader by allowing them to set the input parameters
to the Brownian function.  We can easily do this as follows:

· Select the Brownian block.
· In the Blocks menu select Block for Inputs.

Vshade automatically creates a parameter block for all the unconnected inputs to the Brownian block.

5.10 A Wood Shader with Decals

This tutorial shows how to create a simple wood shader with 2 optional texture decals.

· Start Vshade.
· Click the New button to begin a new shader and choose the Surface_Plastic  template.
· Click the Save button and save the shader as Decal2DWood.vsl in a convenient directory.

· In the Library window expand the Materials category and select the Wood component.
· Place the Wood component to the right and slightly below the Plastic block.
· Connect the Color output of the Wood block to the BaseColor input of the Plastic block.
· Render a preview to see the base wood shader.

Adding the First Decal

Now we'll add a couple decals to the base shader.  The Layers category contains two decal
components - Decal2D and Decal3D.  Decal2D positions the decal using standard texture
coordinates.  Decal3D positions a decal using a projection.  For this tutorial we will use the Decal2D
component.  This same procedure can be used with the Decal3D component to add projected decals
to a shader.

The Decal2D components works by applying a decal on top of a base color.  In our case, the base
color is the output color of the Wood block.  We'll need to place the Decal2D block between the Wood
block and the Plastic block.

· Select the Wood and WoodParms blocks and move them to the right about 4 squares and down
about 3 squares.

· Select the Decal2D block in the Layers category.



Tutorials 54

©2004-2014 SiTex Graphics, Inc.

· Place the Decal2D block between the Plastic block and the Wood block.
· Connect the Color output of the Wood block to the BaseColor input of the Decal2D block.
· Connect the Color output of the Decal2D block to the BaseColor input of the Plastic block.

To see the result:

· Select the View tab, and change the preview Scene to Square in the list of files.
· Double-click the DecalName parameter, and set the Value to sitex.tx, a simple decal included

with AIR.
· Render a preview, which should look something like:

with the decal applied over the wood.

Adding a Second Decal

Adding another decal is pretty much like adding the first:  we'll insert another Decal2D block between
the existing Decal2D block and the Plastic block.  The only catch is that we'll need to rename the
decal parameters to avoid conflicting parameter names.

· Select the Decal2D, Decal2DParms, Wood, and WoodParms blocks.  Move them all 5 squares to
the right and 3 squares down.

· Add a Decals2D block from the Materials category, placing it to the right of the Plastic block in the
space you just created.

· Connect the Color output of the new Decal2D block to the BaseColor input of the Plastic block.
· Connect the Color output from the rightmost Decal2D block to the BaseColor of the new Decal2D

block.



Vshade - The Shader Authoring Tool55

©2004-2014 SiTex Graphics, Inc.

· Select the new Decal2DParms block.  From the Edit menu choose Prefix.  Change the prefix for all
the parameters in that block from Decal to SecondDecal.

To see the second decal:

· Change the SecondDecalName to sitex.tx
· Change the SecondDecalOrigin to 0.3 0.3
· Set the SecondDecalSize to 0.5 0.5
· Change the SecondDecalColor to 1 0 0
· Render a preview to see a second, smaller decal on top of the first:

6 Reference

3D to 2D Projections

Coordinate Spaces

Blend Modes

6.1 3D to 2D Projections

Components included with Vshade that support 3D to 2D projections support the following projection
types:



Reference 56

©2004-2014 SiTex Graphics, Inc.

st Use the default s,t texture
coordinates

planar Use the x and y components of the
point

box Project the point onto a plane
orthogonal to the x,y, or z axes
based on the largest component of
the surface normal.  This projection
is useful for walls, boxes, and other
shapes with flat sides that are
perpendicular to a coordinate axis.

spherical Project the point onto a sphere
centered at the origin with the poles
on the z-axis.  The "latitude" and
"longitude" of the sphere are used
as the texture coordinates.

cylindrical Project the point onto a cylinder
wrapped around the z axis.  The first
texture coordinate is the angle
around the axis of the point
(measured counter-clockwise from
the x-z plane) scaled to the range 0-
1.  The second texture coordinate is
the z component.

Projection Space

For projection types other than st, the coordinate system for the point used for projection may also
often be chosen (just as the shading space for a solid texture is) using a ProjectionSpace or equivalent
parameter.

Texture Coordinate Transformation

Shaders may also accept a transformation matrix to be applied to the point prior to projection.  The
transformation matrix can be used to scale, translate, rotate, or shear the texture pattern.

6.2 Coordinate Spaces

AIR supports hierarchical modeling, in which objects are positioned by applying a series of translation,
rotation, scaling, and arbitrary 3D transformation operations.  Each transformation defines a new
coordinate system.  AIR provides names for those systems or spaces that are commonly used for
shading calculations:



Vshade - The Shader Authoring Tool57

©2004-2014 SiTex Graphics, Inc.

object Coordinate system in which a geometric
primitive is defined.

shader Coordinate system in which a shader is
declared.

world Coordinate system at WorldBegin, after the
camera has been positioned and before any
transformations for objects have been declared.
(The base coordinate system for a scene.)

camera Coordinate system of the camera.  The camera
is assumed to be at the origin, with the y axis
pointing up, the z-axis pointing in, and the x-axis
increasing to the right.

current The space in which calculations are performed
within shaders.  For AIR current space is
camera space, but current space may be
different for other renderers.

screen Coordinate space after perspective projection
(with z coordinates scaled and offset to 0 at the
near clipping plane and 1 at the far clipping
plane.)

NDC Normalized device coordinates.  A 2D device-
independent coordinate system defined on the
screen, with x running from 0 to 1 left-to-right,
and y increasing from 0 to 1 top-to-bottom.

raster A 2D coordinate system where x and y are the
pixel coordinates of a point after projection to the
screen.

6.3 Blend Modes

Vshade's Layers and Bump Layers components recognize the following blend modes:

mix blend between layers based on the top layer
strength

add add layers together

subtract subtract layer values

multiply multiply layer values

min use the minimum of the layer values

max use the maximum of the layer values



History 58

©2004-2014 SiTex Graphics, Inc.

7 History

Vshade 13.0 (September 2013)

· Prefix and suffix commands now work with output blocks
· Rendering to Air Show now uses float precision without gamma correction so the pixel viewer can

be used to see raw color values
· Rendering a link to Air Show no longer wraps output values to keep them in the range 0 to 1
· New item in the Run menu allows the preview image to include any output variables when

rendering to Air Show
· Replaced the old Gamma menu item in the Run menu with a new option to enable sRGB

conversion of the preview image
· New Run menu item to indicate textures are in sRGB color space (enabled by default)
· New preview options to add a sky environment and enable indirect illumination
· The standard templates have been updated to use the latest version of their respective shading

models
· New surface shader templates for physical plastic and physical metal
· Updated the TextureMap and Texture3D blocks under Materials
· The Processors menu item in the Run menu has been removed.  Preview rendering now uses all

detected processors.
· The deprecated fast shading item in the Run menu has been removed.
· New HexPattern component under Patterns 2D
· Window width and height may now be specified using two environment variables,

VSHADE_WIDTH and VSHADE_HEIGHT
· Under Linux Vshade handles a failure to load fonts more gracefully
· Changed version number to match current Air release

Vshade 5.0 (August 2012)

· New iterator block for simplified looping
· The parameter increment and decrement buttons now accept modifiers:  holding down the shift

key while clicking will increment or decrement by 10x the normal amount.  Holding down the
control key while clicking will increment or decrement by 0.1 times the normal amount.

· Vshade issues an error message if the shader could not be compiled because write permission
was denied to the output directory

· (Windows) The default output directory for compiled shaders is now $HOMEPATH/SiTex/shaders.
(The old default was $AIRHOME/usershaders, but that directory is not writable if AIR is installed
under Program Files in Windows 7).

· (Windows) Drop a .rib file in the Vshade window to assign it as the preview scene
· (Windows) New check to prevent multiple parameter edit dialogs

Vshade 4.0 (July 2011)

· Support for new environment and generic shader types in Air 11
· The status bar now displays the last undo-able action
· New Query library category with components for querying attributes, options, and dictionary entries
· New ColorTransform component in the Color category
· File dialog support for PTEX files
· Many small bug fixes for the Linux binary

Vshade 3.0 (August 2009)

· Support for TweakAIR
· New, improved parameter dialog



Vshade - The Shader Authoring Tool59

©2004-2014 SiTex Graphics, Inc.

· Color dialog on Linux
· Drag-and-drop support for .vsl files under Windows
· New toolbar option to display the shader graph flowing left-to-right instead of right-to-left

Vshade 2.0 (December 2008)

· Support for new instancer and procedure shader types in AIR 8
· New RIB blocks for use in instancer or procedure shaders
· Loops
· New Star and Polygon components in Shapes 2D
· New File menu options to export and import shader parameter values
· On Linux Vshade no longer depends on libglade, allowing it to run on more modern Linux versions
· Many small UI fixes and enhancements


	Introduction
	What's New
	Building Shaders
	Block Types
	Input Blocks
	Output Blocks
	Group Blocks
	Function Blocks
	Annotation Blocks
	Illuminate Block
	Solar Block

	Common Block Operations
	Block Parameters
	Connecting Blocks
	Compiling and Previewing
	Interactive Parameter Tweaking
	Shader Documentation
	Compiler Errors
	Debugging a Shader
	Conditional Execution
	Loops

	Component Library
	Bump Layers
	Bumps
	Color
	DarkTree
	Float
	Functions 1D
	Functions 2D
	Functions 3D
	Globals
	Layers
	Lighting Models
	Lighting Primitives
	Materials
	Noise
	Patterns 1D
	Patterns 2D
	Patterns 3D
	Point
	Query
	Reflections
	RIB
	Shapes 2D
	Texture
	Transformations
	Transitions
	Trigonometry

	Tutorials
	A First Surface Shader
	A First Displacement Shader
	A Surface Shader with Bumps
	A Surface Shader with Texture Maps
	Discrete Color Patterns: Simple Brick
	Continuous Color Patterns:  Simple Marble
	3D to 2D Projections
	Reflections with Angle Blend
	A Rippled Displacement Shader
	A Wood Shader with Decals

	Reference
	3D to 2D Projections
	Coordinate Spaces
	Blend Modes

	History

